class="hljs-ln-code"> class="hljs-ln-line">git clone https://github.com/ultralytics/ultralytics class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">cd ultralytics class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">pip install -e . class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
二、数据准备
1、指定格式存放数据集
在yolov8/data目录下新建Annotations, images, ImageSets, labels 四个文件夹
images目录下存放数据集的图片文件
Annotations目录下存放图片的xml文件(labelImg标注)
这里直接参考我的另一篇文章
(链接:yolov7训练数据集详细流程bike-car-person_yolov7模型训练详细过程-CSDN博客)
1)新建split_train_val.py文件
运行之后会在ImageSets/Main下生成四个.txt文件
2.在data目录下新建voc_label.py文件;里面存放代码,里面classes需要改成自己的类别
运行之后生成3个txt文件

3、修改数据加载配置文件
进入data/文件夹,新建coco.yaml,内容如下,注意txt需要使用绝对路径
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line"># COCO 2017 dataset http://cocodataset.org
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line"># Train command: python train.py --data coco.yaml
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line"># Default dataset location is next to /yolov5:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line"># /parent_folder
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line"># /coco
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line"># /yolov5
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line"># download command/URL (optional)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line"># download: bash data/scripts/get_coco.sh
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line"># train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line"># train: ../coco/train2017.txt # 118287 images
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="14"> class="hljs-ln-code"> class="hljs-ln-line"># val: ../coco/val2017.txt # 5000 images
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="15"> class="hljs-ln-code"> class="hljs-ln-line"># test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="16"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="17"> class="hljs-ln-code"> class="hljs-ln-line">train: /home/sxj/yolov8/data/train.txt # 118287 images
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="18"> class="hljs-ln-code"> class="hljs-ln-line">val: /home/sxj/yolov8/data/val.txt # 5000 images
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="19"> class="hljs-ln-code"> class="hljs-ln-line">test: /home/sxj/yolov8/data/test.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="20"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="21"> class="hljs-ln-code"> class="hljs-ln-line"># number of classes
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="22"> class="hljs-ln-code"> class="hljs-ln-line">nc: 3
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="23"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="24"> class="hljs-ln-code"> class="hljs-ln-line"># class names
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="25"> class="hljs-ln-code"> class="hljs-ln-line">names: [ 'bike','carsgraz','person' ]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="26"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="27"> class="hljs-ln-code"> class="hljs-ln-line"># Print classes
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="28"> class="hljs-ln-code"> class="hljs-ln-line"># with open('data/coco.yaml') as f:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="29"> class="hljs-ln-code"> class="hljs-ln-line"># d = yaml.load(f, Loader=yaml.FullLoader) # dict
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="30"> class="hljs-ln-code"> class="hljs-ln-line"># for i, x in enumerate(d['names']):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="31"> class="hljs-ln-code"> class="hljs-ln-line"># print(i, x)
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
至此数据集的准备已经就绪,索引文件在data目录下的train.txt/val.txt/test.txt

三、模型训练/验证/预测/导出
(1)模型训练
进入虚拟环境,进入yolov8文件夹,终端中输入,开始训练:
yolo task=detect mode=train model=yolov8n.pt data=data/coco.yaml batch=1 epochs=50 imgsz=640 workers=8 device=0
yolo task=detect mode=train model=yolov8n.pt data=data/coco.yaml batch=1 epochs=50 imgsz=640 workers=8 device=0
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
多卡训练
yolov8的多卡训练其实很简单,不需要使用繁琐的命令行指令,仅需把device='0,1,2,3’即可,注意一定要加\和引号
yolo task=detect mode=val model=runs/detect/train3/weights/best.pt data=data/coco.yaml device=0 plots=True
(2)模型预测
使用如下命令,即可完成对新数据的预测,source需要指定为自己的图像路径,或者摄像头(0)
yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source=data/images device=0
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
(3)模型导出
使用如下命令,即可完成训练模型的导出
yolo task=detect mode=export model=runs/detect/train/weights/best.pt format=onnx
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
接着就是:
四、YOLOv8部署到RK3588
模型训练→转换RKNN→开发板部署
1、将requirments.txt公示如下,可自创一个txt文件,把内容复制进去再pip install
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line"># Ultralytics requirements
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line"># Usage: pip install -r requirements.txt
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line"># Base ----------------------------------------
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">matplotlib>=3.2.2
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">numpy>=1.22.2 # pinned by Snyk to avoid a vulnerability
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">opencv-python>=4.6.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">pillow>=7.1.2
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line">pyyaml>=5.3.1
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line">requests>=2.23.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line">scipy>=1.4.1
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line">torch>=1.7.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line">torchvision>=0.8.1
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="14"> class="hljs-ln-code"> class="hljs-ln-line">tqdm>=4.64.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="15"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="16"> class="hljs-ln-code"> class="hljs-ln-line"># Logging -------------------------------------
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="17"> class="hljs-ln-code"> class="hljs-ln-line"># tensorboard>=2.13.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="18"> class="hljs-ln-code"> class="hljs-ln-line"># dvclive>=2.12.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="19"> class="hljs-ln-code"> class="hljs-ln-line"># clearml
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="20"> class="hljs-ln-code"> class="hljs-ln-line"># comet
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="21"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="22"> class="hljs-ln-code"> class="hljs-ln-line"># Plotting ------------------------------------
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="23"> class="hljs-ln-code"> class="hljs-ln-line">pandas>=1.1.4
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="24"> class="hljs-ln-code"> class="hljs-ln-line">seaborn>=0.11.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="25"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="26"> class="hljs-ln-code"> class="hljs-ln-line"># Export --------------------------------------
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="27"> class="hljs-ln-code"> class="hljs-ln-line"># coremltools>=7.0.b1 # CoreML export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="28"> class="hljs-ln-code"> class="hljs-ln-line"># onnx>=1.12.0 # ONNX export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="29"> class="hljs-ln-code"> class="hljs-ln-line"># onnxsim>=0.4.1 # ONNX simplifier
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="30"> class="hljs-ln-code"> class="hljs-ln-line"># nvidia-pyindex # TensorRT export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="31"> class="hljs-ln-code"> class="hljs-ln-line"># nvidia-tensorrt # TensorRT export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="32"> class="hljs-ln-code"> class="hljs-ln-line"># scikit-learn==0.19.2 # CoreML quantization
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="33"> class="hljs-ln-code"> class="hljs-ln-line"># tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="34"> class="hljs-ln-code"> class="hljs-ln-line"># tflite-support
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="35"> class="hljs-ln-code"> class="hljs-ln-line"># tensorflowjs>=3.9.0 # TF.js export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="36"> class="hljs-ln-code"> class="hljs-ln-line"># openvino-dev>=2023.0 # OpenVINO export
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="37"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="38"> class="hljs-ln-code"> class="hljs-ln-line"># Extras --------------------------------------
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="39"> class="hljs-ln-code"> class="hljs-ln-line">psutil # system utilization
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="40"> class="hljs-ln-code"> class="hljs-ln-line">py-cpuinfo # display CPU info
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="41"> class="hljs-ln-code"> class="hljs-ln-line"># thop>=0.1.1 # FLOPs computation
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="42"> class="hljs-ln-code"> class="hljs-ln-line"># ipython # interactive notebook
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="43"> class="hljs-ln-code"> class="hljs-ln-line"># albumentations>=1.0.3 # training augmentations
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="44"> class="hljs-ln-code"> class="hljs-ln-line"># pycocotools>=2.0.6 # COCO mAP
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="45"> class="hljs-ln-code"> class="hljs-ln-line"># roboflow
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="46"> class="hljs-ln-code"> class="hljs-ln-line">
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
2、通过命令行进行训练,写一个train.py的脚本,在脚本中输入超参数后,再进行训,在此,建议大家采用脚本训练的方法,并且将脚本放在ultralytics文件夹的同级下
train.py脚本内容:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">from ultralytics import YOLO
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line"># 加载模型
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line"># model = YOLO("yolov8n.yaml") #从头开始构建新模型
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">model = YOLO("yolov8n.pt")
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line"># Use the model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line">results = model.train(data="/home/sxj/yolov8/data/coco.yaml", epochs=100,batch=1)#训练模型
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line"># 将模型导出为 ONNX 格式
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line">success = model.export(format="onnx")
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
data="coco.yaml"
: 指定训练数据集的配置文件路径。这个配置文件应该定义了数据集的位置、类别等信息。epochs=100
: 指定训练的轮数。每一轮训练都会遍历整个数据集一次。batch=1
: 指定每个训练批次的大小。这意味着在每次优化模型权重之前,将使用1个样本更新梯度
3.最重要的一点:
yolov5s模型激活函数为silu, 此激活函数量化类型为float16, 导致推理过程中使用CPU进行计算, 量化效果较糟。 将激活函数换为relu, 可以在牺牲一点精度的情况下获得巨大性能提升, 目前测试约为80 - 83帧, c++优化后会更高
要改激活函数为ReLU,我们如果默认不改,则训练得到的PT模型的激活函数为SiLU:
改激活函数流程如下:
ctrl + f 替换
例如:把ultralytics/nn/modules/conv.py中的Conv类进行修改,
将
default_act = nn.SiLU() # default activation
改为:
default_act = nn.ReLU() # default activation
PT转ONNX
在训练得到PT模型后,我们可以用netron软件打开模型,看一下结构
我们的激活函数是否已经为ReLU了
在终端执行命令:yolo export model=yolov8relupt.pt format=rknn
生成如下结果,同时在目录中生成我们想要的ONNX模型
建一个zhuan.py文件
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">'''将pt转化为onnx
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line"> onnx = 1.16.0
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line"> opset = 12
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">'''
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">from ultralytics import YOLO
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">class Yolov8Pt2Onnx:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line"> def __init__(self, pt_path) -> None:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line"> self.convert(pt_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line"> def convert(self, pt_path):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line"> model = YOLO(pt_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line"> model.export(format = "onnx", opset=12)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="14"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="15"> class="hljs-ln-code"> class="hljs-ln-line">if __name__ == "__main__":
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="16"> class="hljs-ln-code"> class="hljs-ln-line"> pt_path = r"best.pt"
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="17"> class="hljs-ln-code"> class="hljs-ln-line"> Yolov8Pt2Onnx(pt_path)
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
运行之后会在yolov8同级目录下生成best.onnx

ONNX转RKNN
1、创建环境
conda create -n rknn230 python=3.10
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
(最好用新版本;新版本包含yolov8,低版本有可能只包含yolov5)
(我自己用的是rknn-toolkit2-2.3.0;参考文章里面用的是rknn-toolkit2-2.1.0;自己用合适的版本就行,不一定非要选特定版本)
conda activate rknn230
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
cd /home/sxj/YOLO/RKNN2_2.1.0/2.3.0/release/rknn-toolkit2-v2.3.0-2024-11-08/rknn-toolkit2/packages/x86_64
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
进入rknn-toolkit2-2.1.0\rknn-toolkit2-2.1.0\rknn-toolkit2\packages文件夹下,看到如下内容:
终端输入:
pip install -r requirements_cp310-2.1.0.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -r requirements_cp310-2.3.0.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
然后再输入pip install rknn_toolkit2-2.1.0+81f21f4d-cp310-cp310-linux_x86_64.whl
pip install rknn_toolkit2-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

到此rknn环境就配置完成了
4、现在要进行模型转换
1.可以参考rknn_model_zoo-2.3.0\examples\yolov8下的README指导进行转换:
转换流程:
2.先进入rknn_model_zoo-2.3.0\examples\yolov8\python文件夹,先打开yolov8.py,进行适配参数修改:
找到这几个改成自己的
1)
CLASSES = ("person", "bicycle", "car",.....
coco_id_list = [1, 2, 3,......
parser.add_argument('--target', type=str, default='rk3566', help='target RKNPU platform')

我的改完之后:
yolov8.py
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">import os
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">import cv2
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">import sys
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">import argparse
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line"># add path
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">realpath = os.path.abspath(__file__)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">_sep = os.path.sep
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line">realpath = realpath.split(_sep)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line">sys.path.append(os.path.join(realpath[0]+_sep, *realpath[1:realpath.index('rknn_model_zoo')+1]))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line">from py_utils.coco_utils import COCO_test_helper
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line">import numpy as np
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="14"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="15"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="16"> class="hljs-ln-code"> class="hljs-ln-line">OBJ_THRESH = 0.25
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="17"> class="hljs-ln-code"> class="hljs-ln-line">NMS_THRESH = 0.45
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="18"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="19"> class="hljs-ln-code"> class="hljs-ln-line"># The follew two param is for map test
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="20"> class="hljs-ln-code"> class="hljs-ln-line"># OBJ_THRESH = 0.001
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="21"> class="hljs-ln-code"> class="hljs-ln-line"># NMS_THRESH = 0.65
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="22"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="23"> class="hljs-ln-code"> class="hljs-ln-line">IMG_SIZE = (640, 640) # (width, height), such as (1280, 736)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="24"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="25"> class="hljs-ln-code"> class="hljs-ln-line">CLASSES = ('bike','carsgraz','person')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="26"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="27"> class="hljs-ln-code"> class="hljs-ln-line">coco_id_list = [1, 2, 3]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="28"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="29"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="30"> class="hljs-ln-code"> class="hljs-ln-line">def filter_boxes(boxes, box_confidences, box_class_probs):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="31"> class="hljs-ln-code"> class="hljs-ln-line"> """Filter boxes with object threshold.
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="32"> class="hljs-ln-code"> class="hljs-ln-line"> """
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="33"> class="hljs-ln-code"> class="hljs-ln-line"> box_confidences = box_confidences.reshape(-1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="34"> class="hljs-ln-code"> class="hljs-ln-line"> candidate, class_num = box_class_probs.shape
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="35"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="36"> class="hljs-ln-code"> class="hljs-ln-line"> class_max_score = np.max(box_class_probs, axis=-1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="37"> class="hljs-ln-code"> class="hljs-ln-line"> classes = np.argmax(box_class_probs, axis=-1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="38"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="39"> class="hljs-ln-code"> class="hljs-ln-line"> _class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="40"> class="hljs-ln-code"> class="hljs-ln-line"> scores = (class_max_score* box_confidences)[_class_pos]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="41"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="42"> class="hljs-ln-code"> class="hljs-ln-line"> boxes = boxes[_class_pos]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="43"> class="hljs-ln-code"> class="hljs-ln-line"> classes = classes[_class_pos]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="44"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="45"> class="hljs-ln-code"> class="hljs-ln-line"> return boxes, classes, scores
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="46"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="47"> class="hljs-ln-code"> class="hljs-ln-line">def nms_boxes(boxes, scores):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="48"> class="hljs-ln-code"> class="hljs-ln-line"> """Suppress non-maximal boxes.
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="49"> class="hljs-ln-code"> class="hljs-ln-line"> # Returns
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="50"> class="hljs-ln-code"> class="hljs-ln-line"> keep: ndarray, index of effective boxes.
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="51"> class="hljs-ln-code"> class="hljs-ln-line"> """
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="52"> class="hljs-ln-code"> class="hljs-ln-line"> x = boxes[:, 0]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="53"> class="hljs-ln-code"> class="hljs-ln-line"> y = boxes[:, 1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="54"> class="hljs-ln-code"> class="hljs-ln-line"> w = boxes[:, 2] - boxes[:, 0]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="55"> class="hljs-ln-code"> class="hljs-ln-line"> h = boxes[:, 3] - boxes[:, 1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="56"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="57"> class="hljs-ln-code"> class="hljs-ln-line"> areas = w * h
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="58"> class="hljs-ln-code"> class="hljs-ln-line"> order = scores.argsort()[::-1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="59"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="60"> class="hljs-ln-code"> class="hljs-ln-line"> keep = []
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="61"> class="hljs-ln-code"> class="hljs-ln-line"> while order.size > 0:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="62"> class="hljs-ln-code"> class="hljs-ln-line"> i = order[0]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="63"> class="hljs-ln-code"> class="hljs-ln-line"> keep.append(i)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="64"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="65"> class="hljs-ln-code"> class="hljs-ln-line"> xx1 = np.maximum(x[i], x[order[1:]])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="66"> class="hljs-ln-code"> class="hljs-ln-line"> yy1 = np.maximum(y[i], y[order[1:]])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="67"> class="hljs-ln-code"> class="hljs-ln-line"> xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="68"> class="hljs-ln-code"> class="hljs-ln-line"> yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="69"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="70"> class="hljs-ln-code"> class="hljs-ln-line"> w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="71"> class="hljs-ln-code"> class="hljs-ln-line"> h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="72"> class="hljs-ln-code"> class="hljs-ln-line"> inter = w1 * h1
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="73"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="74"> class="hljs-ln-code"> class="hljs-ln-line"> ovr = inter / (areas[i] + areas[order[1:]] - inter)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="75"> class="hljs-ln-code"> class="hljs-ln-line"> inds = np.where(ovr <= NMS_THRESH)[0]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="76"> class="hljs-ln-code"> class="hljs-ln-line"> order = order[inds + 1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="77"> class="hljs-ln-code"> class="hljs-ln-line"> keep = np.array(keep)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="78"> class="hljs-ln-code"> class="hljs-ln-line"> return keep
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="79"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="80"> class="hljs-ln-code"> class="hljs-ln-line">def dfl(position):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="81"> class="hljs-ln-code"> class="hljs-ln-line"> # Distribution Focal Loss (DFL)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="82"> class="hljs-ln-code"> class="hljs-ln-line"> import torch
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="83"> class="hljs-ln-code"> class="hljs-ln-line"> x = torch.tensor(position)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="84"> class="hljs-ln-code"> class="hljs-ln-line"> n,c,h,w = x.shape
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="85"> class="hljs-ln-code"> class="hljs-ln-line"> p_num = 4
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="86"> class="hljs-ln-code"> class="hljs-ln-line"> mc = c//p_num
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="87"> class="hljs-ln-code"> class="hljs-ln-line"> y = x.reshape(n,p_num,mc,h,w)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="88"> class="hljs-ln-code"> class="hljs-ln-line"> y = y.softmax(2)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="89"> class="hljs-ln-code"> class="hljs-ln-line"> acc_metrix = torch.tensor(range(mc)).float().reshape(1,1,mc,1,1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="90"> class="hljs-ln-code"> class="hljs-ln-line"> y = (y*acc_metrix).sum(2)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="91"> class="hljs-ln-code"> class="hljs-ln-line"> return y.numpy()
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="92"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="93"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="94"> class="hljs-ln-code"> class="hljs-ln-line">def box_process(position):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="95"> class="hljs-ln-code"> class="hljs-ln-line"> grid_h, grid_w = position.shape[2:4]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="96"> class="hljs-ln-code"> class="hljs-ln-line"> col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="97"> class="hljs-ln-code"> class="hljs-ln-line"> col = col.reshape(1, 1, grid_h, grid_w)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="98"> class="hljs-ln-code"> class="hljs-ln-line"> row = row.reshape(1, 1, grid_h, grid_w)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="99"> class="hljs-ln-code"> class="hljs-ln-line"> grid = np.concatenate((col, row), axis=1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="100"> class="hljs-ln-code"> class="hljs-ln-line"> stride = np.array([IMG_SIZE[1]//grid_h, IMG_SIZE[0]//grid_w]).reshape(1,2,1,1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="101"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="102"> class="hljs-ln-code"> class="hljs-ln-line"> position = dfl(position)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="103"> class="hljs-ln-code"> class="hljs-ln-line"> box_xy = grid +0.5 -position[:,0:2,:,:]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="104"> class="hljs-ln-code"> class="hljs-ln-line"> box_xy2 = grid +0.5 +position[:,2:4,:,:]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="105"> class="hljs-ln-code"> class="hljs-ln-line"> xyxy = np.concatenate((box_xy*stride, box_xy2*stride), axis=1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="106"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="107"> class="hljs-ln-code"> class="hljs-ln-line"> return xyxy
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="108"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="109"> class="hljs-ln-code"> class="hljs-ln-line">def post_process(input_data):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="110"> class="hljs-ln-code"> class="hljs-ln-line"> boxes, scores, classes_conf = [], [], []
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="111"> class="hljs-ln-code"> class="hljs-ln-line"> defualt_branch=3
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="112"> class="hljs-ln-code"> class="hljs-ln-line"> pair_per_branch = len(input_data)//defualt_branch
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="113"> class="hljs-ln-code"> class="hljs-ln-line"> # Python 忽略 score_sum 输出
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="114"> class="hljs-ln-code"> class="hljs-ln-line"> for i in range(defualt_branch):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="115"> class="hljs-ln-code"> class="hljs-ln-line"> boxes.append(box_process(input_data[pair_per_branch*i]))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="116"> class="hljs-ln-code"> class="hljs-ln-line"> classes_conf.append(input_data[pair_per_branch*i+1])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="117"> class="hljs-ln-code"> class="hljs-ln-line"> scores.append(np.ones_like(input_data[pair_per_branch*i+1][:,:1,:,:], dtype=np.float32))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="118"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="119"> class="hljs-ln-code"> class="hljs-ln-line"> def sp_flatten(_in):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="120"> class="hljs-ln-code"> class="hljs-ln-line"> ch = _in.shape[1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="121"> class="hljs-ln-code"> class="hljs-ln-line"> _in = _in.transpose(0,2,3,1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="122"> class="hljs-ln-code"> class="hljs-ln-line"> return _in.reshape(-1, ch)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="123"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="124"> class="hljs-ln-code"> class="hljs-ln-line"> boxes = [sp_flatten(_v) for _v in boxes]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="125"> class="hljs-ln-code"> class="hljs-ln-line"> classes_conf = [sp_flatten(_v) for _v in classes_conf]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="126"> class="hljs-ln-code"> class="hljs-ln-line"> scores = [sp_flatten(_v) for _v in scores]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="127"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="128"> class="hljs-ln-code"> class="hljs-ln-line"> boxes = np.concatenate(boxes)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="129"> class="hljs-ln-code"> class="hljs-ln-line"> classes_conf = np.concatenate(classes_conf)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="130"> class="hljs-ln-code"> class="hljs-ln-line"> scores = np.concatenate(scores)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="131"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="132"> class="hljs-ln-code"> class="hljs-ln-line"> # filter according to threshold
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="133"> class="hljs-ln-code"> class="hljs-ln-line"> boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="134"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="135"> class="hljs-ln-code"> class="hljs-ln-line"> # nms
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="136"> class="hljs-ln-code"> class="hljs-ln-line"> nboxes, nclasses, nscores = [], [], []
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="137"> class="hljs-ln-code"> class="hljs-ln-line"> for c in set(classes):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="138"> class="hljs-ln-code"> class="hljs-ln-line"> inds = np.where(classes == c)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="139"> class="hljs-ln-code"> class="hljs-ln-line"> b = boxes[inds]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="140"> class="hljs-ln-code"> class="hljs-ln-line"> c = classes[inds]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="141"> class="hljs-ln-code"> class="hljs-ln-line"> s = scores[inds]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="142"> class="hljs-ln-code"> class="hljs-ln-line"> keep = nms_boxes(b, s)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="143"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="144"> class="hljs-ln-code"> class="hljs-ln-line"> if len(keep) != 0:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="145"> class="hljs-ln-code"> class="hljs-ln-line"> nboxes.append(b[keep])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="146"> class="hljs-ln-code"> class="hljs-ln-line"> nclasses.append(c[keep])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="147"> class="hljs-ln-code"> class="hljs-ln-line"> nscores.append(s[keep])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="148"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="149"> class="hljs-ln-code"> class="hljs-ln-line"> if not nclasses and not nscores:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="150"> class="hljs-ln-code"> class="hljs-ln-line"> return None, None, None
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="151"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="152"> class="hljs-ln-code"> class="hljs-ln-line"> boxes = np.concatenate(nboxes)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="153"> class="hljs-ln-code"> class="hljs-ln-line"> classes = np.concatenate(nclasses)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="154"> class="hljs-ln-code"> class="hljs-ln-line"> scores = np.concatenate(nscores)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="155"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="156"> class="hljs-ln-code"> class="hljs-ln-line"> return boxes, classes, scores
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="157"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="158"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="159"> class="hljs-ln-code"> class="hljs-ln-line">def draw(image, boxes, scores, classes):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="160"> class="hljs-ln-code"> class="hljs-ln-line"> for box, score, cl in zip(boxes, scores, classes):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="161"> class="hljs-ln-code"> class="hljs-ln-line"> top, left, right, bottom = [int(_b) for _b in box]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="162"> class="hljs-ln-code"> class="hljs-ln-line"> print("%s @ (%d %d %d %d) %.3f" % (CLASSES[cl], top, left, right, bottom, score))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="163"> class="hljs-ln-code"> class="hljs-ln-line"> cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="164"> class="hljs-ln-code"> class="hljs-ln-line"> cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="165"> class="hljs-ln-code"> class="hljs-ln-line"> (top, left - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="166"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="167"> class="hljs-ln-code"> class="hljs-ln-line">def setup_model(args):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="168"> class="hljs-ln-code"> class="hljs-ln-line"> model_path = args.model_path
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="169"> class="hljs-ln-code"> class="hljs-ln-line"> if model_path.endswith('.pt') or model_path.endswith('.torchscript'):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="170"> class="hljs-ln-code"> class="hljs-ln-line"> platform = 'pytorch'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="171"> class="hljs-ln-code"> class="hljs-ln-line"> from py_utils.pytorch_executor import Torch_model_container
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="172"> class="hljs-ln-code"> class="hljs-ln-line"> model = Torch_model_container(args.model_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="173"> class="hljs-ln-code"> class="hljs-ln-line"> elif model_path.endswith('.rknn'):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="174"> class="hljs-ln-code"> class="hljs-ln-line"> platform = 'rknn'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="175"> class="hljs-ln-code"> class="hljs-ln-line"> from py_utils.rknn_executor import RKNN_model_container
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="176"> class="hljs-ln-code"> class="hljs-ln-line"> model = RKNN_model_container(args.model_path, args.target, args.device_id)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="177"> class="hljs-ln-code"> class="hljs-ln-line"> elif model_path.endswith('onnx'):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="178"> class="hljs-ln-code"> class="hljs-ln-line"> platform = 'onnx'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="179"> class="hljs-ln-code"> class="hljs-ln-line"> from py_utils.onnx_executor import ONNX_model_container
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="180"> class="hljs-ln-code"> class="hljs-ln-line"> model = ONNX_model_container(args.model_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="181"> class="hljs-ln-code"> class="hljs-ln-line"> else:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="182"> class="hljs-ln-code"> class="hljs-ln-line"> assert False, "{} is not rknn/pytorch/onnx model".format(model_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="183"> class="hljs-ln-code"> class="hljs-ln-line"> print('Model-{} is {} model, starting val'.format(model_path, platform))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="184"> class="hljs-ln-code"> class="hljs-ln-line"> return model, platform
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="185"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="186"> class="hljs-ln-code"> class="hljs-ln-line">def img_check(path):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="187"> class="hljs-ln-code"> class="hljs-ln-line"> img_type = ['.jpg', '.jpeg', '.png', '.bmp']
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="188"> class="hljs-ln-code"> class="hljs-ln-line"> for _type in img_type:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="189"> class="hljs-ln-code"> class="hljs-ln-line"> if path.endswith(_type) or path.endswith(_type.upper()):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="190"> class="hljs-ln-code"> class="hljs-ln-line"> return True
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="191"> class="hljs-ln-code"> class="hljs-ln-line"> return False
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="192"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="193"> class="hljs-ln-code"> class="hljs-ln-line">if __name__ == '__main__':
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="194"> class="hljs-ln-code"> class="hljs-ln-line"> parser = argparse.ArgumentParser(description='Process some integers.')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="195"> class="hljs-ln-code"> class="hljs-ln-line"> # basic params
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="196"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--model_path', type=str, required= True, help='model path, could be .pt or .rknn file')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="197"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--target', type=str, default='rk3588', help='target RKNPU platform')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="198"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--device_id', type=str, default=None, help='device id')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="199"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="200"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--img_show', action='store_true', default=False, help='draw the result and show')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="201"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--img_save', action='store_true', default=False, help='save the result')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="202"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="203"> class="hljs-ln-code"> class="hljs-ln-line"> # data params
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="204"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--anno_json', type=str, default='../../../datasets/COCO/annotations/instances_val2017.json', help='coco annotation path')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="205"> class="hljs-ln-code"> class="hljs-ln-line"> # coco val folder: '../../../datasets/COCO//val2017'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="206"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--img_folder', type=str, default='../model', help='img folder path')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="207"> class="hljs-ln-code"> class="hljs-ln-line"> parser.add_argument('--coco_map_test', action='store_true', help='enable coco map test')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="208"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="209"> class="hljs-ln-code"> class="hljs-ln-line"> args = parser.parse_args()
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="210"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="211"> class="hljs-ln-code"> class="hljs-ln-line"> # init model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="212"> class="hljs-ln-code"> class="hljs-ln-line"> model, platform = setup_model(args)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="213"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="214"> class="hljs-ln-code"> class="hljs-ln-line"> file_list = sorted(os.listdir(args.img_folder))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="215"> class="hljs-ln-code"> class="hljs-ln-line"> img_list = []
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="216"> class="hljs-ln-code"> class="hljs-ln-line"> for path in file_list:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="217"> class="hljs-ln-code"> class="hljs-ln-line"> if img_check(path):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="218"> class="hljs-ln-code"> class="hljs-ln-line"> img_list.append(path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="219"> class="hljs-ln-code"> class="hljs-ln-line"> co_helper = COCO_test_helper(enable_letter_box=True)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="220"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="221"> class="hljs-ln-code"> class="hljs-ln-line"> # run test
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="222"> class="hljs-ln-code"> class="hljs-ln-line"> for i in range(len(img_list)):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="223"> class="hljs-ln-code"> class="hljs-ln-line"> print('infer {}/{}'.format(i+1, len(img_list)), end='\r')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="224"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="225"> class="hljs-ln-code"> class="hljs-ln-line"> img_name = img_list[i]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="226"> class="hljs-ln-code"> class="hljs-ln-line"> img_path = os.path.join(args.img_folder, img_name)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="227"> class="hljs-ln-code"> class="hljs-ln-line"> if not os.path.exists(img_path):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="228"> class="hljs-ln-code"> class="hljs-ln-line"> print("{} is not found", img_name)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="229"> class="hljs-ln-code"> class="hljs-ln-line"> continue
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="230"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="231"> class="hljs-ln-code"> class="hljs-ln-line"> img_src = cv2.imread(img_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="232"> class="hljs-ln-code"> class="hljs-ln-line"> if img_src is None:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="233"> class="hljs-ln-code"> class="hljs-ln-line"> continue
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="234"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="235"> class="hljs-ln-code"> class="hljs-ln-line"> '''
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="236"> class="hljs-ln-code"> class="hljs-ln-line"> # using for test input dumped by C.demo
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="237"> class="hljs-ln-code"> class="hljs-ln-line"> img_src = np.fromfile('./input_b/demo_c_input_hwc_rgb.txt', dtype=np.uint8).reshape(640,640,3)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="238"> class="hljs-ln-code"> class="hljs-ln-line"> img_src = cv2.cvtColor(img_src, cv2.COLOR_RGB2BGR)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="239"> class="hljs-ln-code"> class="hljs-ln-line"> '''
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="240"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="241"> class="hljs-ln-code"> class="hljs-ln-line"> # Due to rga init with (0,0,0), we using pad_color (0,0,0) instead of (114, 114, 114)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="242"> class="hljs-ln-code"> class="hljs-ln-line"> pad_color = (0,0,0)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="243"> class="hljs-ln-code"> class="hljs-ln-line"> img = co_helper.letter_box(im= img_src.copy(), new_shape=(IMG_SIZE[1], IMG_SIZE[0]), pad_color=(0,0,0))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="244"> class="hljs-ln-code"> class="hljs-ln-line"> img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="245"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="246"> class="hljs-ln-code"> class="hljs-ln-line"> # preprocee if not rknn model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="247"> class="hljs-ln-code"> class="hljs-ln-line"> if platform in ['pytorch', 'onnx']:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="248"> class="hljs-ln-code"> class="hljs-ln-line"> input_data = img.transpose((2,0,1))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="249"> class="hljs-ln-code"> class="hljs-ln-line"> input_data = input_data.reshape(1,*input_data.shape).astype(np.float32)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="250"> class="hljs-ln-code"> class="hljs-ln-line"> input_data = input_data/255.
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="251"> class="hljs-ln-code"> class="hljs-ln-line"> else:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="252"> class="hljs-ln-code"> class="hljs-ln-line"> input_data = img
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="253"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="254"> class="hljs-ln-code"> class="hljs-ln-line"> outputs = model.run([input_data])
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="255"> class="hljs-ln-code"> class="hljs-ln-line"> boxes, classes, scores = post_process(outputs)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="256"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="257"> class="hljs-ln-code"> class="hljs-ln-line"> if args.img_show or args.img_save:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="258"> class="hljs-ln-code"> class="hljs-ln-line"> print('\n\nIMG: {}'.format(img_name))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="259"> class="hljs-ln-code"> class="hljs-ln-line"> img_p = img_src.copy()
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="260"> class="hljs-ln-code"> class="hljs-ln-line"> if boxes is not None:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="261"> class="hljs-ln-code"> class="hljs-ln-line"> draw(img_p, co_helper.get_real_box(boxes), scores, classes)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="262"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="263"> class="hljs-ln-code"> class="hljs-ln-line"> if args.img_save:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="264"> class="hljs-ln-code"> class="hljs-ln-line"> if not os.path.exists('./result'):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="265"> class="hljs-ln-code"> class="hljs-ln-line"> os.mkdir('./result')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="266"> class="hljs-ln-code"> class="hljs-ln-line"> result_path = os.path.join('./result', img_name)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="267"> class="hljs-ln-code"> class="hljs-ln-line"> cv2.imwrite(result_path, img_p)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="268"> class="hljs-ln-code"> class="hljs-ln-line"> print('Detection result save to {}'.format(result_path))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="269"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="270"> class="hljs-ln-code"> class="hljs-ln-line"> if args.img_show:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="271"> class="hljs-ln-code"> class="hljs-ln-line"> cv2.imshow("full post process result", img_p)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="272"> class="hljs-ln-code"> class="hljs-ln-line"> cv2.waitKeyEx(0)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="273"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="274"> class="hljs-ln-code"> class="hljs-ln-line"> # record maps
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="275"> class="hljs-ln-code"> class="hljs-ln-line"> if args.coco_map_test is True:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="276"> class="hljs-ln-code"> class="hljs-ln-line"> if boxes is not None:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="277"> class="hljs-ln-code"> class="hljs-ln-line"> for i in range(boxes.shape[0]):
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="278"> class="hljs-ln-code"> class="hljs-ln-line"> co_helper.add_single_record(image_id = int(img_name.split('.')[0]),
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="279"> class="hljs-ln-code"> class="hljs-ln-line"> category_id = coco_id_list[int(classes[i])],
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="280"> class="hljs-ln-code"> class="hljs-ln-line"> bbox = boxes[i],
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="281"> class="hljs-ln-code"> class="hljs-ln-line"> score = round(scores[i], 5).item()
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="282"> class="hljs-ln-code"> class="hljs-ln-line"> )
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="283"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="284"> class="hljs-ln-code"> class="hljs-ln-line"> # calculate maps
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="285"> class="hljs-ln-code"> class="hljs-ln-line"> if args.coco_map_test is True:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="286"> class="hljs-ln-code"> class="hljs-ln-line"> pred_json = args.model_path.split('.')[-2]+ '_{}'.format(platform) +'.json'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="287"> class="hljs-ln-code"> class="hljs-ln-line"> pred_json = pred_json.split('/')[-1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="288"> class="hljs-ln-code"> class="hljs-ln-line"> pred_json = os.path.join('./', pred_json)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="289"> class="hljs-ln-code"> class="hljs-ln-line"> co_helper.export_to_json(pred_json)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="290"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="291"> class="hljs-ln-code"> class="hljs-ln-line"> from py_utils.coco_utils import coco_eval_with_json
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="292"> class="hljs-ln-code"> class="hljs-ln-line"> coco_eval_with_json(args.anno_json, pred_json)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="293"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="294"> class="hljs-ln-code"> class="hljs-ln-line"> # release
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="295"> class="hljs-ln-code"> class="hljs-ln-line"> model.release()
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
3.然后修改convert.py,如下所示:
我自己convert.py代码:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">import sys
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">from rknn.api import RKNN
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">DATASET_PATH = '../../../datasets/COCO/coco_subset_20.txt'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">DEFAULT_RKNN_PATH = 'best.rknn'
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">DEFAULT_QUANT = True
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">def parse_arg():
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line"> if len(sys.argv) < 3:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line"> print("Usage: python3 {} onnx_model_path [platform] [dtype(optional)] [output_rknn_path(optional)]".format(sys.argv[0]));
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line"> print(" platform choose from [rk3562,rk3566,rk3568,rk3576,rk3588,rk1808,rv1109,rv1126]")
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line"> print(" dtype choose from [i8, fp] for [rk3562,rk3566,rk3568,rk3576,rk3588]")
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line"> print(" dtype choose from [u8, fp] for [rk1808,rv1109,rv1126]")
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="14"> class="hljs-ln-code"> class="hljs-ln-line"> exit(1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="15"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="16"> class="hljs-ln-code"> class="hljs-ln-line"> model_path = sys.argv[1]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="17"> class="hljs-ln-code"> class="hljs-ln-line"> platform = sys.argv[2]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="18"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="19"> class="hljs-ln-code"> class="hljs-ln-line"> do_quant = DEFAULT_QUANT
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="20"> class="hljs-ln-code"> class="hljs-ln-line"> if len(sys.argv) > 3:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="21"> class="hljs-ln-code"> class="hljs-ln-line"> model_type = sys.argv[3]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="22"> class="hljs-ln-code"> class="hljs-ln-line"> if model_type not in ['i8', 'u8', 'fp']:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="23"> class="hljs-ln-code"> class="hljs-ln-line"> print("ERROR: Invalid model type: {}".format(model_type))
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="24"> class="hljs-ln-code"> class="hljs-ln-line"> exit(1)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="25"> class="hljs-ln-code"> class="hljs-ln-line"> elif model_type in ['i8', 'u8']:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="26"> class="hljs-ln-code"> class="hljs-ln-line"> do_quant = True
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="27"> class="hljs-ln-code"> class="hljs-ln-line"> else:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="28"> class="hljs-ln-code"> class="hljs-ln-line"> do_quant = False
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="29"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="30"> class="hljs-ln-code"> class="hljs-ln-line"> if len(sys.argv) > 4:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="31"> class="hljs-ln-code"> class="hljs-ln-line"> output_path = sys.argv[4]
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="32"> class="hljs-ln-code"> class="hljs-ln-line"> else:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="33"> class="hljs-ln-code"> class="hljs-ln-line"> output_path = DEFAULT_RKNN_PATH
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="34"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="35"> class="hljs-ln-code"> class="hljs-ln-line"> return model_path, platform, do_quant, output_path
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="36"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="37"> class="hljs-ln-code"> class="hljs-ln-line">if __name__ == '__main__':
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="38"> class="hljs-ln-code"> class="hljs-ln-line"> model_path, platform, do_quant, output_path = parse_arg()
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="39"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="40"> class="hljs-ln-code"> class="hljs-ln-line"> # Create RKNN object
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="41"> class="hljs-ln-code"> class="hljs-ln-line"> rknn = RKNN(verbose=False)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="42"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="43"> class="hljs-ln-code"> class="hljs-ln-line"> # Pre-process config
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="44"> class="hljs-ln-code"> class="hljs-ln-line"> print('--> Config model')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="45"> class="hljs-ln-code"> class="hljs-ln-line"> rknn.config(mean_values=[[0, 0, 0]], std_values=[
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="46"> class="hljs-ln-code"> class="hljs-ln-line"> [255, 255, 255]], target_platform=platform)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="47"> class="hljs-ln-code"> class="hljs-ln-line"> print('done')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="48"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="49"> class="hljs-ln-code"> class="hljs-ln-line"> # Load model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="50"> class="hljs-ln-code"> class="hljs-ln-line"> print('--> Loading model')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="51"> class="hljs-ln-code"> class="hljs-ln-line"> ret = rknn.load_onnx(model=model_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="52"> class="hljs-ln-code"> class="hljs-ln-line"> if ret != 0:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="53"> class="hljs-ln-code"> class="hljs-ln-line"> print('Load model failed!')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="54"> class="hljs-ln-code"> class="hljs-ln-line"> exit(ret)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="55"> class="hljs-ln-code"> class="hljs-ln-line"> print('done')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="56"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="57"> class="hljs-ln-code"> class="hljs-ln-line"> # Build model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="58"> class="hljs-ln-code"> class="hljs-ln-line"> print('--> Building model')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="59"> class="hljs-ln-code"> class="hljs-ln-line"> ret = rknn.build(do_quantization=do_quant, dataset=DATASET_PATH)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="60"> class="hljs-ln-code"> class="hljs-ln-line"> if ret != 0:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="61"> class="hljs-ln-code"> class="hljs-ln-line"> print('Build model failed!')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="62"> class="hljs-ln-code"> class="hljs-ln-line"> exit(ret)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="63"> class="hljs-ln-code"> class="hljs-ln-line"> print('done')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="64"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="65"> class="hljs-ln-code"> class="hljs-ln-line"> # Export rknn model
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="66"> class="hljs-ln-code"> class="hljs-ln-line"> print('--> Export rknn model')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="67"> class="hljs-ln-code"> class="hljs-ln-line"> ret = rknn.export_rknn(output_path)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="68"> class="hljs-ln-code"> class="hljs-ln-line"> if ret != 0:
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="69"> class="hljs-ln-code"> class="hljs-ln-line"> print('Export rknn model failed!')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="70"> class="hljs-ln-code"> class="hljs-ln-line"> exit(ret)
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="71"> class="hljs-ln-code"> class="hljs-ln-line"> print('done')
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="72"> class="hljs-ln-code"> class="hljs-ln-line">
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="73"> class="hljs-ln-code"> class="hljs-ln-line"> # Release
- class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="74"> class="hljs-ln-code"> class="hljs-ln-line"> rknn.release()
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
4.修改完成后,将我们之前得到的onnx模型复制到python文件夹下:
图片是截图其他博主的,更新完会用自己的替换掉
conda activate rknn230
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
netron best.onnx
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
netron best.rknn
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
打开终端,激活rknn230环境,输入命令:python convert.py best.onnx rk3588
结果如下:

可以看到:这两条错误信息表明,在RKNN模型编译或运行时,某个字段值的位宽超出了预期的限制
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!
Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output0' is changed from 'float32' to 'int8' in rknn model for performance!
Please take care of this change when deploy rknn model with Runtime API!
I rknn building ...
E RKNN: [17:26:23.759] REGTASK: The bit width of field value exceeds the limit, target: v2, offset: 0x4038, shift = 0, limit: 0x1fff, value: 0x419f
E RKNN: [17:26:23.759] REGTASK: The bit width of field value exceeds the limit, target: v2, offset: 0x4038, shift = 16, limit: 0x1fff, value: 0x419f
I rknn building done.
done
--> Export rknn model
先把模型部署到RK3588上看影响大不,后面解决了会更新上来
查看同级目录可以看到best.rknn

六、模型部署到RK3588上
1、部署到rk3588的项目,已经更新在我的另一篇文章上这里不再赘述
文章链接:yolov8部署到RK3588_并运行示例12.4_rk3588运行yolo-CSDN博客
至此完成!!!
安装rknn-toolkit2环境时
也可以直接参考我的另一篇文章:
但是我的用的rknn-toolkit2是1.6.0里面只包含yolov5,所以需要最新版本!
(链接:记录如何在RK3588板子上跑通paddle的OCR模型_rk3588 paddle ocr-CSDN博客)
参考:YOLOv8教程系列:一、使用自定义数据集训练YOLOv8模型(详细版教程,你只看一篇->调参攻略),包含环境搭建/数据准备/模型训练/预测/验证/导出等_yolov8训练自己的数据集-CSDN博客
参考:【YOLOv8部署至RK3588】模型训练→转换RKNN→开发板部署_yolov8转rknn-CSDN博客
评论记录:
回复评论: