• class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2">
  • class="hljs-ln-code"> class="hljs-ln-line">docker pull ollama/ollama:0.3.0
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line"># AMD GPU下载ollama 0.3.0
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">docker pull ollama/ollama:0.3.0-rocm
  • class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

     

    三:启动ollama容器:

    方式一:docker desktop界面启动

    方式二:命令行启动

    注:也可以通过docker-compose.yaml配置文件拉取ollama,参考Docker部署全攻略:Ollama安装、本地大模型配置与One-API接入_ollama docker部署-CSDN博客

    关于ollama使用GPU还可以参考:在Linux上如何让ollama在GPU上运行模型_ollama使用gpu-CSDN博客

    Ollama 现已推出官方 Docker 镜像 · Ollama 博客 - Ollama 框架

    四、在ollama容器中拉取deepseek r1模型

    我拉取的是14B,大家可以根据自己电脑配置选择不同版本大模型

    在ollama容器中执行如下命令,等待下载好deepseek-r1完成即可:

    ollama run deepseek-r1:14b
     class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    参考:deekseek-r1本地部署指南极简版-CSDN博客

     如果大家还想使用open web ui可以参考:deepseek-r1落地指南(搭建web-ui | 搭建本地代码编辑器)-CSDN博客

    五、(可选)运行deepseek并调用GPU

    如果在“三:启动ollama容器:”中启用的是CPU版本的容器,则deepseek无法调用GPU,如果还想调用GPU,应该如下操作:

    1.验证docker可以调用GPU命令如下:

    docker run --gpus all ubuntu nvidia-smi class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    2.制作镜像保存在本地,命令如下:

    docker commit 5ae3d25d6f5d odeepseek14b class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    3.运行镜像,生成容器,命令如下(命令中要包含--gpus=all才能调用GPU):

    docker run -d --gpus=all --hostname=5ae3d25d6f5d --env=PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin --env=OLLAMA_HOST=0.0.0.0 --env=LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 --env=NVIDIA_DRIVER_CAPABILITIES=compute,utility --env=NVIDIA_VISIBLE_DEVICES=all --network=bridge -p 8089:11434 --restart=no --label='org.opencontainers.image.ref.name=ubuntu' --label='org.opencontainers.image.version=22.04' --runtime=runc -d odeepseek14b class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    注意:调用GPU时,如果加上--gpus=all,则容器inspect中会显示如下:

    1. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line"> "DeviceRequests": [
    2. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line"> {
    3. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line"> "Driver": "",
    4. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line"> "Count": -1,
    5. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line"> "DeviceIDs": null,
    6. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line"> "Capabilities": [
    7. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line"> [
    8. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line"> "gpu"
    9. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line"> ]
    10. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="10"> class="hljs-ln-code"> class="hljs-ln-line"> ],
    11. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="11"> class="hljs-ln-code"> class="hljs-ln-line"> "Options": {}
    12. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="12"> class="hljs-ln-code"> class="hljs-ln-line"> }
    13. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="13"> class="hljs-ln-code"> class="hljs-ln-line"> ],
    class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    如果没有加 --gpus=all,会显示:

    "DeviceRequests": null, class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    则无法调用GPU

    4.验证容器中是否调用GPU成功,命令如下:

    nvidia-smi class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    >>
    注:本文转载自blog.csdn.net的yimenren的文章"https://blog.csdn.net/yimenren/article/details/145384233"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
    复制链接

    评论记录:

    未查询到任何数据!