首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

局部特征(5)——如何利用彩色信息 Color Descriptors

  • 25-03-04 02:43
  • 4603
  • 7924
blog.csdn.net
局部特征系列:
  • 局部特征(1)——入门篇
  • 局部特征(2)——Harris角点 
  • 局部特征(3)——SURF特征总结 
  • 局部特征(4)——SIFT和SURF的比较 
  • 局部特征(5)——如何利用彩色信息 Color Descriptors 
  • 局部特征(6)——局部特征描述汇总 

 --------------------------------------------------------------    


        前面两讲中主要是针对SIFT和SURF做了一些介绍。他们的检测子比较稳定,描述子比较鲁棒,好像非常棒的样子。但是有一点非常遗憾,就是他们在对图像进行处理的过程中,都把图像转化为灰度图像进行处理,这样就丢失了颜色信息。而颜色,本身提供了很大的信息量,丢失了特别可惜。很多人可能就会想,如何在描述子中加入颜色信息。在这一讲中,我们就重点介绍一下改进的SIFT/SURF的Color Descriptor。

        这里的Descriptor,其实我们可以把它当做大家传统上理解的特征。而特征,应该具有两个比较重要的特点。第一就是它应该是最有区分度、最有代表性的,应该尽可能减少冗余的信息。如果对于大多数物体来说,这个变量的值非常相近,没有什么区分性,自然不适合做特征。而另一个方面,它应该尽可能的稳定和鲁棒。对于同样的物体来说,当它因为噪声的变化或者图像的旋转、尺度变换等影响时,这个变量的值应该是尽可能不变的(invariant)。 我们要评价一个描述子是否鲁棒,重点就看图像被加入噪声后,形成的描述子是否依然稳定(也就是特征的各维是否不发生变化)。这里所谓的噪声,无外乎以下几种:

        这里几乎把所有可能发生的线性变化都列出来了。可以考虑到,现有的灰度的SIFT/SURF特征对于1-3的变化具有不变性。这主要得益于1)他们都采用梯度的直方图(Haar小波也是计算了梯度),这样可以消除intensity shift。2)RGB的线性变化不影响梯度的方向。3)最终都对描述子向量做了归一化,解决了灰度的尺度变化。这样的话,我们需要考虑的就是如何解决4-5的颜色上的变化了。在此之前,我们先看看目前不用在SIFT/SURF上有哪些颜色特征,然后考虑把这些颜色特征放到描述子中。

        1、RGB histogram,最常见的颜色直方图,你懂的,但是不具有任何不变性,想到这里以后还是换个特征用吧。

        2、Opponent histogram


        O1和O2表征了颜色信息,对lightintensity shift是不变的,不过O3这个直接与灰度相关的变量就不是了。

        3、Hue histogram

        这个大家也熟悉,它对灰度的尺度变化和增量变化具有不变性。所以说HSV颜色空间对于RGB颜色空间,在这一点上有着优势。

        4、rg histogram

        相当于对rgb分量做了一个归一化,归一化之后r/g分量就可以描述图像的颜色信息。其中b分量是多余的,因为r+g+b=1。Rg直方图对light intensity change是不变的,对于存在阴影的场景中可以尝试用。


        5、transformed colorhistogram

        考虑到rgb直方图对于灰度和颜色的线性变化不具有任何不变性,但是如果我们考虑对RGB三个通道分别做归一化,归一化的方法如:


        这样,通过减去均值可以抵消各通道的valueshift,通过除以方差可以抵消各通道的value scale change。(均值和方差以待统计的块为单位进行计算。)这样归一化之后的直方图对于light color change and shift是具有不变性的。

 

        列举了颜色直方图的几种统计方法之后,我们可以把他们用在SIFT/SURF描述子之中。因为传统的SIFT/SURF描述子是对单通道进行统计的,当使用上述特征进行统计时,就是对多个通道分别计算描述子,最后形成一个多维的特征作为颜色描述子。重点想提一下的就是:

        C-SIFT:利用Opponentinformation中的 O1/O3和O2/O3作为颜色特征,这么做的目的是为了消除O1和O2中的灰度信息,但是,这样做却不能对intensity shift有不变性。

        Transformedcolor SIFT:这个特征将不仅对灰度的change和shift具有不变性,同时还对各颜色的shift和change都具有不变性;

        RGB-SIFT:很有意思的就是由于Transformedcolor SIFT对各通道的线性变化都具有不变性,而Transformed就是RGB特征经过线性变换而来,因此RGB-SIFT和Transformed color SIFT具有同样的不变性(效果是一样的)。

       最后,对上面介绍的所有特征的不变性做一个总结,见下表,其中“+”表示对这一变化具有不变性,“-”则表示不具有这种不变性。


 

-------------------------------

jiang1st2010

原文地址:http://iyenn.com/rec/1703377.html


注:本文转载自blog.csdn.net的jiang1st的文章"http://blog.csdn.net/jiang1st2010/article/details/7647766"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top