首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【动态规划】【记忆化搜索】C++算法:546移除盒子

  • 24-03-11 13:09
  • 3302
  • 10352
blog.csdn.net

作者推荐

【动态规划】458:可怜的小猪

本文涉及知识点

动态规划 记忆化搜索

LeetCode546. 移除盒子

给出一些不同颜色的盒子 boxes ,盒子的颜色由不同的正数表示。
你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止。每一轮你可以移除具有相同颜色的连续 k 个盒子(k >= 1),这样一轮之后你将得到 k * k 个积分。
返回 你能获得的最大积分和 。
示例 1:
输入:boxes = [1,3,2,2,2,3,4,3,1]
输出:23
解释:
[1, 3, 2, 2, 2, 3, 4, 3, 1]
----> [1, 3, 3, 4, 3, 1] (33=9 分)
----> [1, 3, 3, 3, 1] (1
1=1 分)
----> [1, 1] (33=9 分)
----> [] (2
2=4 分)
示例 2:
输入:boxes = [1,1,1]
输出:9
示例 3:
输入:boxes = [1]
输出:1
提示:
1 <= boxes.length <= 100
1 <= boxes[i] <= 100

动态规划

动态规划的状态表示:

dp[l][r][k]表示消除以下子序列获得的最大得分。
boxes[0,l)已经消除或不会对消除此子序列有影响。
boxes[l,r]全部没有消除。
boxes(r,n)除k个boxes[r]外,全部消除。

思路

假定boxs[i1]、boxs[i2]、boxs[i3]、boxes[i4]相等,且不存在其它等于boxs[i4]的盒子。消除i4时有如下可能。
为了方便,用g(l,r)代替 dp[l+1][r-1][0] f(r,k)代替dp[0][r][k]

i4f[i4-1][0]+(k+1) ^2l ,i4,0
i3 i4f[i3][1]+g(i3,i4)l ,i4,0 -->l,i3,1
i2 i4f[i2][1]+g(i2,i4)l ,i4,0 ->l,i2,1
i1 i4f[i1][1]+g(i1,i4)l ,i4,0 >l,i1,1
i1 i2 i4f[i1][2]+g(i1,i2)+g{i2,i4)l ,i4,0 --> l,i2,1 -> l,i1->2
i1 i3 i4f[i1][2]+g(i1,i3)+g{i3,i4)l ,i4,0 --> l,i3,1 -> l,i1->2
i2 i3 i4f[i2][2]+g(i2,i3)+g{i3,i4)l ,i4,0 --> l,i3,1 -> l,i2->2
i1 i2 i3 i4f[i1][3]+g(i1,i2)+g{i2,i3)++g{i3,i4)l ,i4,0 --> l,i3,1 ->l,i2->2–>l,i1,3

我们以i1 i2 i4 为例:
f[i4][0]可能等于 f[i2][1] + g[i2,i4]
f[i2][1]可能等于f[i1][2] + g[i1+i2]
==> f[i4][0] 可能等于 f[i1]i2] + g[i1][i2] + g[i2][i4]
** 结论** 枚举消除时,不用枚举所有一同消除的下标,只需要枚举前一个下标。这意味着转移方程的时间复杂度从O(2n)降为O(n)。
状态数为n3,故空间复杂度为O(n3),时间复杂度为:O(n4)。许多状态不可能同时存在,实际时间复杂度低得多。

动态规划分析

动态规划的转移方程表示:
所有盒子都会被消除,所以boxes[r]也是,枚举boxes[r]被消除的可能:
情况一:boxes[r]被消除时,r的下标最小(最左边)。转移方程为:(k+1)*(k+1) + dp[l][r-1][0]
情况二:boxes[r]被消除时,i的小标比r小,如果有多个i取最大值。转移方程为:dp[i+1][r+1][0] + dp[l][i][k+1]

动态规划的初始状态:
全部为0,表示未计算。

动态规划的填表顺序:
计算dp[0][n-1][0]需要的状态。

动态规划的返回值:
dp[0][n-1][0]

枚举了不可能的情况

比如: {1,2,1,1} 由于boxs[2]和boxs[3]之间没有其它数字,所以它们一定同时被消除。
假定boxs[i1]boxs[i2]=x,且i1+1i2。
假定一:i1和i2被两次消除。 不失一般性,假定i1先被消除。包括i1共k1个x被消除,包括i2共k2个x被消除。
假定二:假定i1和i2之间没数据。除不消i1外,其它操作及顺序和假定一相同,直到消除i2。则时消除k0+k1+k2个x。 k1个boxs[i1]左边可以有k0个可以一并消除。在假定1中,这个k0x无论是一次消除还是多次消除都小于等于k0k0。除了这些x外,其它完全一样。假定一<=k0k0+k1k2+k2k2 假定二:(k0+k1+k2)^2。显然假定一 <= 假定二
这k0个x可能在假定一中和更左边的结合,那假定二可能等待这些都消除了,再消除i2。
结论: 假定一不存在,但它一定不优于假定二,假定二存在,所以多枚举了假定一,不会带来错误结果。

代码

核心代码

class Solution {
public:
	int removeBoxes(vector<int>& boxes) {
		m_c = boxes.size();
		m_boxes = boxes;
		for (int i = 0; i < m_c; i++)
		{
			m_dp[i].assign(m_c, vector<int>(m_c));
		}
		return Cal(0,m_c-1,0);
	}
	int Cal(const int& l, const int& r, const int& k)
	{
		if (l > r)
		{
			return 0;
		}
		if (0 != m_dp[l][r][k])
		{
			return m_dp[l][r][k];
		}
		m_dp[l][r][k] = Cal(l, r - 1, 0) + (k + 1) * (k + 1);
		for (int i = l; i < r; i++)
		{
			if (m_boxes[i] == m_boxes[r])
			{
				m_dp[l][r][k] = max(m_dp[l][r][k], Cal(l, i, k + 1)+ Cal(i+1,r-1,0));
			}
		}
		return m_dp[l][r][k];
	}
	int m_c;
	vector<int> m_boxes;
	vector < vector<int>> m_dp[100];
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	vector<int> boxes;

	{
		Solution sln;
		boxes = { 1, 2, 2, 1, 1, 1, 2, 1 };
		auto res = sln.removeBoxes(boxes);
		Assert(30, res);
	}
	{
		Solution sln;
		boxes = { 1, 3, 2, 2, 2, 3, 4, 3, 1 };
		auto res = sln.removeBoxes(boxes);
		Assert(23, res);
	}
	{
		Solution sln;
		boxes = { 1,1,1 };
		auto res = sln.removeBoxes(boxes);
		Assert(9, res);
	}
	{
		Solution sln;
		boxes = { 1 };
		auto res = sln.removeBoxes(boxes);
		Assert(1, res);
	}
	{
		Solution sln;
		boxes = { 1,2,1 };
		auto res = sln.removeBoxes(boxes);
		Assert(5, res);
	}
	{
		Solution sln;
		boxes = { 1,2,2,1,1,1,2,1,1,2,1,2,1,1,2,2,1,1,2,2,1,1,1,2,2,2,2,1,2,1,1,2,2,1,2,1,2,2,2,2,2,1,2,1,2,2,1,1,1,2,2,1,2,1,2,2,1,2,1,1,1,2,2,2,2,2,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,1,1,1,2,1,2,2,1 };
		auto res = sln.removeBoxes(boxes);
		Assert(2758, res);
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

2023年1月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
memset(m_dp, 0, sizeof(m_dp));
return Cal(boxes,0, boxes.size() - 1, 0);
}
int Cal(const vector& boxes,int l, int r, int k)
{
if (l > r)
{
return 0;
}
if (0 != m_dp[l][r][k])
{
return m_dp[l][r][k];
}
int iSum = Cal(boxes,l, r - 1, 0) + (k + 1)*(k + 1);
for (int i = l; i < r; i++)
{
if (boxes[i] != boxes[r])
{
continue;
}
iSum = max(iSum, Cal(boxes, l, i, k + 1) + Cal(boxes, i + 1, r - 1, 0));
}
m_dp[l][r][k] = iSum;
return m_dp[l][r][k];
}
int m_dp[100][100][100] ;
};

2023年6月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
m_c = boxes.size();
memset(m_aLRNum, -1, sizeof(m_aLRNum));
return remove(boxes,0, m_c - 1, 0);
}
int remove(const vector& boxes,const int left, const int right, int k)
{
if (right < left)
{
return 0;
}
int& iRet = m_aLRNum[left][right][k];
if (iRet >= 0)
{
return iRet;
}
iRet = (1 + k)*(1 + k) + remove(boxes,left, right - 1, 0);
int tmp = right-1;
//[1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1],可以先消除中间,只保留两个1
while (tmp >= left)
{
while ((tmp >= left) && (boxes[tmp] != boxes[right]))
{
tmp–;
}
if (tmp < left)
{
return iRet;
}
iRet = max(iRet, remove(boxes, tmp + 1, right - 1, 0) + remove(boxes, left, tmp, k + 1));
tmp–;
}
return iRet;
}
int m_c;
int m_aLRNum[100][100][100];//m_aLRNum[l][r][k] 消除nums的[l.r]及和nums[r]相等的k个数
};

2023年8月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
m_boxes = boxes;
//dp[l][r][k]表示 boxes[l] 到boxes[r] 是最后消除的,消除时后面有k同颜色的数
memset(m_dp, 0, sizeof(m_dp));
return Cal(0, boxes.size() - 1, 0);
}
int Cal(int left, int r, int k)
{
if (r < left)
{
return 0;
}
int& iRet = m_dp[left][r][k];
if (0 != iRet)
{
return iRet;
}
iRet = Cal(left, r - 1, 0) + (k + 1) * (k + 1);//直接消除
for (int i = r - 1; i >= left; i–)
{
if (m_boxes[i] != m_boxes[r])
{
continue;
}
iRet = max(iRet, Cal(left, i, k + 1) + Cal(i + 1, r - 1, 0));
}
return iRet;
}
int m_dp[100][100][100];
vector m_boxes;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/135543157"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top