- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18

三、高级功能深度探索
3.1 上下文感知编程
- 跨文件理解:如何在多文件项目中保持上下文连贯性
- 代码补全策略:基于AST的智能推断技术
- 调试辅助:错误堆栈分析与修复建议生成
3.2 定制化模型微调
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./fine_tuned_model",
learning_rate=2e-5,
per_device_train_batch_size=4,
num_train_epochs=3,
logging_dir="./logs",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=lambda data: {"input_ids": torch.stack([f[0] for f in data]),
)
trainer.train()
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
class="hide-preCode-box">
评论记录:
回复评论: