以下为完整代码:
import hashlib   
import time      
class Transaction:       
def __init__(self, sender, receiver, amount):           
self.sender = sender           
self.receiver = receiver           
self.amount = amount      
class Block:       
def __init__(self, index, timestamp, transactions, previous_hash):           
self.index = index           
self.timestamp = timestamp           
self.transactions = transactions           
self.previous_hash = previous_hash           
self.hash = self.calculate_hash()          
def calculate_hash(self):           
sha = hashlib.sha256()           
transactions_str = "".join([f"{tx.sender}{tx.receiver}{tx.amount}" 
for tx in self.transactions])           
sha.update
(f"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}".encode('utf-8'))           
return sha.hexdigest()      
class Blockchain:       
def __init__(self):           
self.chain = [self.create_genesis_block()]           
self.pending_transactions = []           
self.mining_reward = 100          
def create_genesis_block(self):           
return Block(0, time.time(), [], "0")          
def get_latest_block(self):           
return self.chain[-1]          
def mine_pending_transactions(self, mining_reward_address):           
reward_tx = Transaction(None, mining_reward_address, self.mining_reward)           
self.pending_transactions.append(reward_tx)
new_block = Block(len(self.chain), time.time(), 
self.pending_transactions, self.get_latest_block().hash)           
new_block.hash = new_block.calculate_hash()           
self.chain.append(new_block)           
self.pending_transactions = []          
def create_transaction(self, transaction):           
self.pending_transactions.append(transaction)          
def get_balance(self, address):           
balance = 0           
for block in self.chain:               
for tx in block.transactions:                   
if tx.sender == address:                       
balance -= tx.amount                   
if tx.receiver == address:                       
balance += tx.amount           
return balance      

# 使用示例   
blockchain = Blockchain()    
  
# 创建一些交易   
blockchain.create_transaction(Transaction("Alice", "Bob", 50))   
blockchain.create_transaction(Transaction("Bob", "Alice", 30))      

# 挖矿   

blockchain.mine_pending_transactions("Miner1")      

# 打印区块链   
for block in blockchain.chain:       
print(f"Index: {block.index}")       
print(f"Timestamp: {block.timestamp}")       
print(f"Transactions: 
{[{'sender': tx.sender, 'receiver': tx.receiver, 'amount': tx.amount} 
for tx in block.transactions]}")       
print(f"Previous Hash: {block.previous_hash}")       
print(f"Hash: {block.hash}")       
print()      

# 打印余额   
print(f"Balance of Miner1: {blockchain.get_balance('Miner1')}")   
print(f"Balance of Alice: {blockchain.get_balance('Alice')}")   
print(f"Balance of Bob: {blockchain.get_balance('Bob')}")   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
class="hide-preCode-box">

谁能挖矿成功?

在区块链中,挖矿是一个竞争的过程,只有第一个找到符合条件的哈希值的矿工才能获得奖励。这个过程是一个随机的过程,因此只能通过不断尝试来找到符合条件的哈希值。
决定谁可以挖矿成功的算法有很多种,比如工作量证明(Proof of Work)、权益证明(Proof of Stake)等等。其中工作量证明是最常见的一种算法,比特币就是使用工作量证明算法来决定谁可以挖矿成功。
这里我们实现一下工作量证明算法(POW)。工作量证明算法的核心思想是找到一个符合条件的哈希值,这个哈希值的前几位是 0。这个条件是可以调整的,比如前两位是 0,前三位是 0 等等。位数越多,实现起来越困难。我们可以将这个位数称为难度(Difficulty)。如果被哈希的字符串是固定的,那么哈希值一定也是固定的,因此被哈希的字符串不能是固定的(否则可能无法找到符合条件的哈希值),通常的做法是包含一个随机数 nonce,这个随机数就是我们需要不断尝试的值。
也就是说没有这个约束,我们很快就能计算出哈希,这个哈希有可能也不满足 difficult 条件,但是有了这个约束,我们就需要不断尝试,直到找到符合条件的哈希值。
为了实现这个目的,我们需要:
def proof_of_work(self, difficulty):       
self.nonce = 0       
computed_hash = self.calculate_hash()       
while not computed_hash.startswith('0' * difficulty):           
self.nonce += 1           
computed_hash = self.calculate_hash()       
return computed_hash   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
import hashlib   
import time      
class Transaction:       
def __init__(self, sender, receiver, amount):           
self.sender = sender           
self.receiver = receiver           
self.amount = amount      
class Block:       
def __init__(self, index, timestamp, transactions, previous_hash):           
self.index = index           
self.timestamp = timestamp           
self.transactions = transactions           
self.previous_hash = previous_hash           
self.nonce = 0           
self.hash = self.calculate_hash()          
def calculate_hash(self):           
sha = hashlib.sha256()           
transactions_str = "".join([f"{tx.sender}{tx.receiver}{tx.amount}" 
for tx in self.transactions])           
sha.update
(f"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}".encode('utf-8'))           
return sha.hexdigest()          
def proof_of_work(self, difficulty):           
self.nonce = 0           
computed_hash = self.calculate_hash()           
while not computed_hash.startswith('0' * difficulty):               
self.nonce += 1               
computed_hash = self.calculate_hash()           
return computed_hash      
class Blockchain:       
def __init__(self):           
self.chain = [self.create_genesis_block()]           
self.pending_transactions = []           
self.mining_reward = 100           
self.difficulty = 4          
def create_genesis_block(self):           
return Block(0, time.time(), [], "0")          
def get_latest_block(self):           
return self.chain[-1]          
def mine_pending_transactions(self, mining_reward_address):           
reward_tx = Transaction(None, mining_reward_address, self.mining_reward)           
self.pending_transactions.append(reward_tx)           
new_block = 
Block(len(self.chain), time.time(), 
self.pending_transactions, self.get_latest_block().hash)           

# 注意这里调用的是 proof_of_work 方法           
new_block.hash = new_block.proof_of_work(self.difficulty)           
self.chain.append(new_block)           
self.pending_transactions = []          
def create_transaction(self, transaction):           
self.pending_transactions.append(transaction)          
def get_balance(self, address):           
balance = 0           
for block in self.chain:               
for tx in block.transactions:                   
if tx.sender == address:                       
balance -= tx.amount                   
if tx.receiver == address:                       
balance += tx.amount           
return balance      

# 使用示例   
blockchain = Blockchain()      

# 创建一些交易   
blockchain.create_transaction(Transaction("Alice", "Bob", 50))   
blockchain.create_transaction(Transaction("Bob", "Alice", 30))      

# 挖矿   
blockchain.mine_pending_transactions("Miner1")      

# 打印区块链   
for block in blockchain.chain:       
print(f"Index: {block.index}")       
print(f"Timestamp: {block.timestamp}")       
print(f"Transactions: {[{'sender': tx.sender, 'receiver': tx.receiver, 'amount': tx.amount} 
for tx in block.transactions]}")       
print(f"Previous Hash: {block.previous_hash}")       
print(f"Hash: {block.hash}")       
print(f"Nonce: {block.nonce}")       
print()      

# 打印余额   
print(f"Balance of Miner1: {blockchain.get_balance('Miner1')}")   
print(f"Balance of Alice: {blockchain.get_balance('Alice')}")   
print(f"Balance of Bob: {blockchain.get_balance('Bob')}")   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">

智能合约

智能合约是区块链中的另一个重要概念,它是一种自动执行的合约,不需要中间人,不需要信任。智能合约是区块链中的一种应用,它可以实现一些自动化的业务逻辑,比如数字货币、供应链金融等等。
本质上,智能合约是一段代码,这段代码会被部署到区块链上,然后通过交易来调用这段代码。智能合约的代码是不可篡改的,一旦部署到区块链上,就无法修改。
智能合约的本体就是代码,本质类似于状态机。
智能合约还有一个很重要的概念是 ABI。ABI(Application Binary Interface,应用二进制接口)是智能合约与外部应用程序之间的接口定义。它描述了智能合约的函数和事件,使得外部应用程序可以与智能合约进行交互。
智能合约代码是用 Solidity 等编程语言编写的,定义了合约的逻辑和功能。合约代码通常需要编译,在编译后会生成字节码(bytecode),部署到区块链上。
ABI 是合约编译后生成的 JSON 文件,描述了合约的接口。它不包含合约的逻辑实现,只包含函数和事件的定义。外部应用程序使用 ABI 来与部署在区块链上的合约进行交互。
也就是说 ABI 决定了如何调用合约,而合约代码决定了合约的逻辑
为了在区块链中添加智能合约功能,我们需要进行以下步骤:
class SmartContract:       
def __init__(self, code):           
self.code = code           
self.state = {}          
def execute(self, sender, receiver, amount):           
exec(self.code, 
{'sender': sender, 'receiver': receiver, 'amount': amount, 'state': self.state})   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
def deploy_contract(self, contract_code):       
contract = SmartContract(contract_code)       
contract_address = hashlib.sha256(contract_code.encode('utf-8')).hexdigest()       
self.contracts[contract_address] = contract       
return contract_address      
def call_contract(self, contract_address, sender, receiver, amount):       
contract = self.contracts.get(contract_address)       
if contract:           
contract.execute(sender, receiver, amount)           
tx = Transaction(sender, receiver, amount, contract_address)           
self.create_transaction(tx)   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">

合约有地址属性,合约的地址是合约代码的哈希值,这也说明了合约的本体就是代码本身。通常要调用合约就是指定合约地址,然后调用合约的方法,外加一些参数。本质上和调用函数是一样的。

完整代码:
import hashlib   
import time     
 class Transaction:       
 def __init__(self, sender, receiver, amount, contract=None):           
 self.sender = sender           
 self.receiver = receiver           
 self.amount = amount           
 self.contract = contract      
class SmartContract:       
def __init__(self, code):           
self.code = code           
self.state = {}          
def execute(self, sender, receiver, amount):           
exec(self.code, {'sender': sender, 'receiver': receiver, 'amount': amount, 'state': self.state})      
class Block:       
def __init__(self, index, timestamp, transactions, previous_hash):           
self.index = index           
self.timestamp = timestamp           
self.transactions = transactions           
self.previous_hash = previous_hash           
self.nonce = 0           
self.hash = self.calculate_hash()          
def calculate_hash(self):           
sha = hashlib.sha256()           
transactions_str = "".join([f"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}" 
for tx in self.transactions])           
sha.update
(f"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}".encode('utf-8'))           
return sha.hexdigest()          
def proof_of_work(self, difficulty):           
self.nonce = 0           
computed_hash = self.calculate_hash()           
while not computed_hash.startswith('0' * difficulty):               
self.nonce += 1               
computed_hash = self.calculate_hash()           
return computed_hash      
class Blockchain:       
def __init__(self):           
self.chain = [self.create_genesis_block()]           
self.pending_transactions = []           
self.mining_reward = 100           
self.difficulty = 4           
self.contracts = {}          
def create_genesis_block(self):           
return Block(0, time.time(), [], "0")          
def get_latest_block(self):          
 return self.chain[-1]          
def mine_pending_transactions(self, mining_reward_address):           
reward_tx = Transaction(None, mining_reward_address, self.mining_reward)        
self.pending_transactions.append(reward_tx)           
new_block = 
Block(len(self.chain), time.time(), self.pending_transactions, 
self.get_latest_block().hash)           
new_block.hash = new_block.proof_of_work(self.difficulty)           
self.chain.append(new_block)           
self.pending_transactions = []          
def create_transaction(self, transaction):           
self.pending_transactions.append(transaction)          
def deploy_contract(self, contract_code):           
contract = SmartContract(contract_code)           
contract_address = hashlib.sha256(contract_code.encode('utf-8')).hexdigest()        
self.contracts[contract_address] = contract           
return contract_address          
def call_contract(self, contract_address, sender, receiver, amount):           
contract = self.contracts.get(contract_address)           
if contract:               
contract.execute(sender, receiver, amount)               
tx = Transaction(sender, receiver, amount, contract_address)               
self.create_transaction(tx)          
def get_balance(self, address):           
balance = 0           
for block in self.chain:               
for tx in block.transactions:                   
if tx.sender == address:                       
balance -= tx.amount                   
if tx.receiver == address:                       
balance += tx.amount           
return balance  
   
# 使用示例   
blockchain = Blockchain()      

# 部署智能合约   
contract_code = """   if amount > 10:       
state['status'] = 'High value transaction'   else:       
state['status'] = 'Low value transaction'   """   
contract_address = blockchain.deploy_contract(contract_code)      

# 调用智能合约   
blockchain.call_contract(contract_address, "Alice", "Bob", 50)      

# 挖矿   
blockchain.mine_pending_transactions("Miner1")      

# 打印区块链   
for block in blockchain.chain:       
print(f"Index: {block.index}")       
print(f"Timestamp: {block.timestamp}")       
print(f"Transactions: 
{[{'sender': tx.sender, 'receiver': tx.receiver, 'amount': tx.amount, 'contract': tx.contract} 
for tx in block.transactions]}")       
print(f"Previous Hash: {block.previous_hash}")       
print(f"Hash: {block.hash}")       
print(f"Nonce: {block.nonce}")       
print()      

# 打印智能合约状态   
print(f"Contract State: {blockchain.contracts[contract_address].state}")      

# 打印余额   
print(f"Balance of Miner1: {blockchain.get_balance('Miner1')}")   
print(f"Balance of Alice: {blockchain.get_balance('Alice')}")   
print(f"Balance of Bob: {blockchain.get_balance('Bob')}")   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">

验证交易

交易不全是有效的,我们需要验证交易的有效性。比如余额不足、交易重复,签名等等。
为了实现验证交易的功能,我们需要以下步骤:
def validate_transaction(self, transaction):       
if transaction.sender is None:  # Mining reward transaction           
return True       
sender_balance = self.get_balance(transaction.sender)       
if sender_balance >= transaction.amount:           
return True      
return False   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
class Transaction:       
def __init__(self, sender, receiver, amount, signature=None, contract=None):           
self.sender = sender           
self.receiver = receiver           
self.amount = amount           
self.signature = signature           
self.contract = contract          
def to_dict(self):           
return {'sender': self.sender,'receiver': self.receiver,'amount': self.amount,'contract': self.contrac}          
def sign_transaction(self, private_key):           
sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
self.signature = sk.sign(message).hex()          
def is_valid(self):           
if self.sender is None:  # Mining reward transaction               
return True           
if not self.signature:               
return False           
vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
try:               
return vk.verify(bytes.fromhex(self.signature), message)           
except:               
return False   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">
import hashlib   
import time   
import requests   
from flask import Flask, jsonify, request   
from ecdsa import SigningKey, VerifyingKey, SECP256k1      
class Transaction:       
def __init__(self, sender, receiver, amount, signature=None, contract=None):           
self.sender = sender           
self.receiver = receiver           
self.amount = amount           
self.signature = signature           
self.contract = contract          
def to_dict(self):           
return {'sender': self.sender,'receiver': self.receiver,'amount': self.amount'contract': self.contract}          
def sign_transaction(self, private_key):           
sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
self.signature = sk.sign(message).hex()          
def is_valid(self):           
if self.sender is None:  # Mining reward transaction               
return True           
if not self.signature:               
return False          
vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
try:               
return vk.verify(bytes.fromhex(self.signature), message)           
except:               
return False      
class Block:       
def __init__(self, index, timestamp, transactions, previous_hash):           
self.index = index           
self.timestamp = timestamp           
self.transactions = transactions           
self.previous_hash = previous_hash           
self.nonce = 0           
self.hash = self.calculate_hash()          
def calculate_hash(self):           
sha = hashlib.sha256()           
transactions_str = "".join([f"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}" 
for tx in self.transactions])           
sha.update
(f"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}".encode('utf-8'))           
return sha.hexdigest()          
def proof_of_work(self, difficulty):           
self.nonce = 0          
computed_hash = self.calculate_hash()           
while not computed_hash.startswith('0' * difficulty):               
self.nonce += 1               
computed_hash = self.calculate_hash()           
return computed_hash      
class Blockchain:       
def __init__(self):           
self.chain = [self.create_genesis_block()]           
self.pending_transactions = []           
self.mining_reward = 100           
self.difficulty = 4           
self.contracts = {}           
self.nodes = set()          
def create_genesis_block(self):           
return Block(0, time.time(), [], "0")          
def get_latest_block(self):           
return self.chain[-1]          
def mine_pending_transactions(self, mining_reward_address):           
reward_tx = Transaction(None, mining_reward_address, self.mining_reward)           
self.pending_transactions.append(reward_tx)           
new_block = 
Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)           
new_block.hash = new_block.proof_of_work(self.difficulty)           
self.chain.append(new_block)           
self.pending_transactions = []           
self.broadcast_block(new_block)          
def create_transaction(self, transaction):           
if self.validate_transaction(transaction):               
self.pending_transactions.append(transaction)               
self.broadcast_transaction(transaction)           
else:               
raise ValueError("Invalid transaction")          
def validate_transaction(self, transaction):           
if transaction.sender is None:  # Mining reward transaction               
return True           
sender_balance = self.get_balance(transaction.sender)           
if sender_balance >= transaction.amount and transaction.is_valid():               
return True           
return False          
def deploy_contract(self, contract_code):           
contract = SmartContract(contract_code)           
contract_address = hashlib.sha256(contract_code.encode('utf-8')).hexdigest()           
self.contracts[contract_address] = contract           
return contract_address          
def call_contract(self, contract_address, sender, receiver, amount):           
contract = self.contracts.get(contract_address)           
if contract:               
contract.execute(sender, receiver, amount)               
tx = Transaction(sender, receiver, amount, contract_address)               
self.create_transaction(tx)          
def get_balance(self, address):           
balance = 0           
for block in self.chain:               
for tx in block.transactions:                   
if tx.sender == address:                      
balance -= tx.amount                   
if tx.receiver == address:                       
balance += tx.amount           
return balance         
class Node:       
def __init__(self, address):           
self.address = address          
 self.blockchain = Blockchain()      
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">

如果两个矿工同时挖到了区块怎么办?

这涉及到一个共识算法,比如比特币使用的共识算法是最长链原则。
在区块链中,如果两个矿工同时挖到了区块,那么就会出现分叉的情况。这个时候需要选择一个分支作为主链,另一个分支作为孤块。选择主链的原则是选择最长的链作为主链。
至今我们的区块链都是单节点的,接下来我们要实现多节点的区块链来解决这个问题。
首先我们需要实现多节点、节点广播和节点同步的功能。为此我需要:
class Node:       
def __init__(self, address):           
self.address = address           
self.blockchain = Blockchain()          
def connect_to_node(self, node_address):           
self.blockchain.add_node(node_address)          
def broadcast_transaction(self, transaction):           
for node in self.blockchain.nodes:               
requests.post(f"{node}/add_transaction", json=transaction.__dict__)   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
def add_node(self, address):           
self.nodes.add(address)          
def broadcast_block(self, block):           
for node in self.nodes:               
requests.post(f"{node}/add_block", json=block.__dict__)          
def sync_chain(self):           
longest_chain = None           
max_length = len(self.chain)           
for node in self.nodes:               
response = requests.get(f"{node}/chain")               
length = response.json()['length']               
chain = response.json()['chain']               
if length > max_length:                   
max_length = length                   
longest_chain = chain           
if longest_chain:               
self.chain = [Block(**block) for block in longest_chain]
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">
app = Flask(__name__)   
node = Node("http://localhost:5000")    
  
@app.route('/chain', methods=['GET'])   
def get_chain():       
chain_data = [block.__dict__ 
for block in node.blockchain.chain]       
return jsonify(length=len(chain_data), chain=chain_data)     
 
@app.route('/add_block', methods=['POST'])   
def add_block():      
block_data = request.get_json()       
block = Block(**block_data)       
node.blockchain.chain.append(block)       
return "Block added", 201      

@app.route('/add_transaction', methods=['POST'])   
def add_transaction():       
tx_data = request.get_json()       
transaction = Transaction(**tx_data)       
node.blockchain.create_transaction(transaction)       
return "Transaction added", 201      

@app.route('/mine', methods=['GET'])   
def mine():       
node.blockchain.mine_pending_transactions(node.address)       
return "Mining complete", 200      
if __name__ == '__main__':       
app.run(port=5000)   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">
接下来,我们实现最长链原则,当两个矿工同时挖到了区块时,我们选择最长的链作为主链。
为了实现这个功能,我们先介绍下分叉如何实现。
  1. 创建一个新的链:从当前链的某个区块开始创建一个新的链。
  2. 添加新的区块到分叉链:在新的链上添加新的区块。
  3. 切换到分叉链:在需要的时候切换到分叉链。
整个过程类似于我们 git 上切换分支。
fork_chain 方法:从当前链的某个区块开始创建一个新的链,并将其添加到 forks 列表中。
switch_to_fork 方法:切换到指定的分叉链
Flask 路由:
最后我们来加入最长链原则。
为了在区块链中实现最长链原则,我们需要在同步链时选择最长的链作为当前链。以下是详细步骤和代码实现:
详细步骤
  1. 同步链:从所有节点获取链数据。找到最长的链。如果最长的链比当前链长,则替换当前链。
  2. 广播新块:当有新块时,广播给所有节点。
  3. 验证链:验证链的有效性。
Flask 路由:
以下为完整代码:
import hashlib   
import time   
import requests   
from flask 
import Flask, jsonify, request   
from ecdsa 
import SigningKey, VerifyingKey, SECP256k1      
class Transaction:       
def __init__(self, sender, receiver, amount, signature=None, contract=None):           
self.sender = sender           
self.receiver = receiver           
self.amount = amount           
self.signature = signature           
self.contract = contract          
def to_dict(self):           
return 
{'sender': self.sender,'receiver': self.receiver,'amount': self.amount,'contract': self.contract}          
def sign_transaction(self, private_key):           
sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
self.signature = sk.sign(message).hex()          
def is_valid(self):           
if self.sender is None:  # Mining reward transaction               
return True           
if not self.signature:               
return False           
vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)           
message = str(self.to_dict()).encode('utf-8')           
try:               
return vk.verify(bytes.fromhex(self.signature), message)           
except:               
return False      
class Block:       
def __init__(self, index, timestamp, transactions, previous_hash):           
self.index = index           
self.timestamp = timestamp           
self.transactions = transactions           
self.previous_hash = previous_hash           
self.nonce = 0           
self.hash = self.calculate_hash()          
def calculate_hash(self):           
sha = hashlib.sha256()           
transactions_str = "".join([f"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}" 
for tx in self.transactions])           
sha.update
(f"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}".encode('utf-8'))           
return sha.hexdigest()          
def proof_of_work(self, difficulty):           
self.nonce = 0           
computed_hash = self.calculate_hash()           
while not computed_hash.startswith('0' * difficulty):              
self.nonce += 1               
computed_hash = self.calculate_hash()           
return computed_hash      
class Blockchain:       
def __init__(self):           
self.chain = [self.create_genesis_block()]           
self.pending_transactions = []           
self.mining_reward = 100           
self.difficulty = 4           
self.contracts = {}           
self.nodes = set()           
self.forks = []          
def create_genesis_block(self):           
return Block(0, time.time(), [], "0")          
def get_latest_block(self):          
return self.chain[-1]          
def mine_pending_transactions(self, mining_reward_address):           
reward_tx = Transaction(None, mining_reward_address, self.mining_reward)           
self.pending_transactions.append(reward_tx)           
new_block = 
Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)           
new_block.hash = new_block.proof_of_work(self.difficulty)           
self.chain.append(new_block)           
self.pending_transactions = []           
self.broadcast_block(new_block)          
def create_transaction(self, transaction):           
if self.validate_transaction(transaction):               
self.pending_transactions.append(transaction)               
self.broadcast_transaction(transaction)           
else:               
raise ValueError("Invalid transaction")          
def validate_transaction(self, transaction):           
if transaction.sender is None:  # Mining reward transaction               
return True           
sender_balance = self.get_balance(transaction.sender)           
if sender_balance >= transaction.amount and transaction.is_valid():               
return True           
return False          
def deploy_contract(self, contract_code):           
contract = SmartContract(contract_code)           
contract_address = hashlib.sha256(contract_code.encode('utf-8')).hexdigest()           
self.contracts[contract_address] = contract          
return contract_address          
def call_contract(self, contract_address, sender, receiver, amount):           
contract = self.contracts.get(contract_address)           
if contract:               
contract.execute(sender, receiver, amount)               
tx = Transaction(sender, receiver, amount, contract_address)               
self.create_transaction(tx)          
def get_balance(self, address):           
balance = 0           
for block in self.chain:               
for tx in block.transactions:                   
if tx.sender == address:                       
balance -= tx.amount                   
if tx.receiver == address:                       
balance += tx.amount           
return balance          
def add_node(self, address):           
self.nodes.add(address)          
def broadcast_block(self, block):           
for node in self.nodes:               
requests.post(f"{node}/add_block", json=block.__dict__)         
def broadcast_transaction(self, transaction):           
for node in self.nodes:               
requests.post(f"{node}/add_transaction", json=transaction.__dict__)         
def sync_chain(self):           
longest_chain = None           
max_length = len(self.chain)           
for node in self.nodes:               
response = requests.get(f"{node}/chain")               
length = response.json()['length']               
chain = response.json()['chain']               
if length > max_length and self.is_valid_chain(chain):                   
max_length = length                   
longest_chain = chain           
if longest_chain:               
self.chain = [Block(**block) for block in longest_chain]          
def is_valid_chain(self, chain):           
for i in range(1, len(chain)):               
current_block = chain[i]               
previous_block = chain[i - 1]               
if current_block['previous_hash'] != previous_block['hash']:                   
return False               
block = Block(**current_block)               
if block.hash != block.calculate_hash():                   
return False           
return True          
def fork_chain(self, fork_point):           
if fork_point < 0 or fork_point >= len(self.chain):               
raise ValueError("Invalid fork point")           
forked_chain = self.chain[:fork_point + 1]           
self.forks.append(forked_chain)           
return forked_chain          
def switch_to_fork(self, fork_index):           
if fork_index < 0 or fork_index >= len(self.forks):               
raise ValueError("Invalid fork index")           
self.chain = self.forks[fork_index]      class Node:       
def __init__(self, address):           self.address = address           
self.blockchain = Blockchain()          
def connect_to_node(self, node_address):           
self.blockchain.add_node(node_address)          
def broadcast_transaction(self, transaction):           
for node in self.blockchain.nodes:               
requests.post(f"{node}/add_transaction", json=transaction.__dict__)      
app = Flask(__name__)   node = Node("http://localhost:5000")     
 
@app.route('/chain', methods=['GET'])   
def get_chain():       
chain_data = [block.__dict__ for block in node.blockchain.chain]       
return jsonify(length=len(chain_data), chain=chain_data)      

@app.route('/add_block', methods=['POST'])   def add_block():       
block_data = request.get_json()       block = Block(**block_data)       
node.blockchain.chain.append(block)       
return "Block added", 201      

@app.route('/add_transaction', methods=['POST'])   
def add_transaction():       
tx_data = request.get_json()       
transaction = Transaction(**tx_data)       
try:           
node.blockchain.create_transaction(transaction)           
return "Transaction added", 201       
except ValueError as e:           
return str(e), 400      

@app.route('/mine', methods=['GET'])   
def mine():       
node.blockchain.mine_pending_transactions(node.address)       
return "Mining complete", 200      

@app.route('/fork', methods=['POST'])   
def fork():       
fork_point = request.json.get('fork_point')       
try:           
forked_chain = node.blockchain.fork_chain(fork_point)           
return jsonify([block.__dict__ 
for block in forked_chain]), 201       
except ValueError as e:           
return str(e), 400     
 
@app.route('/switch_fork', methods=['POST'])   
def switch_fork():       
fork_index = request.json.get('fork_index')       
try:           
node.blockchain.switch_to_fork(fork_index)           
return "Switched to fork", 200       
except ValueError as e:           
return str(e), 400      
if __name__ == '__main__':       
app.run(port=5000)   
 class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}"> class="hide-preCode-box">

总结

在本文中,我们学习了如何使用 Python 实现一个简单的区块链。我们实现了区块链、区块、交易、智能合约、节点等核心概念。我们还实现了挖矿、交易验证、节点同步等功能,希望能帮助你快速入门区块链技术。

图片

总结

文末福利

包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】领取!

可以扫描下方二维码领取【保证100%免费在这里插入图片描述

data-report-view="{"mod":"1585297308_001","spm":"1001.2101.3001.6548","dest":"https://blog.csdn.net/2301_78217634/article/details/145490984","extend1":"pc","ab":"new"}">>
注:本文转载自blog.csdn.net的东眠的鱼的文章"https://blog.csdn.net/2301_78217634/article/details/145490984"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接

评论记录:

未查询到任何数据!