首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

微软发布Phi-3.5——这个新型小型AI模型优于Gemini和GPT-4o

  • 25-03-08 00:42
  • 2824
  • 8234
blog.csdn.net

微软发布了其小型语言模型 Phi-3.5 的最新版本。这个新版本是对上一代的重大升级,在几个重要指标上击败了谷歌、OpenAI、Mistral 和 Meta 等领先公司的小型模型。

Phi-3.5 有 38 亿、41.5 亿和 419 亿个参数版本。这三个版本都可以免费下载,可以使用 Ollama 等本地工具运行。

它在推理方面表现特别出色,在领先的小型模型中仅次于 GPT-4o-mini。它在数学基准测试中也表现出色,大大超过了 Llama 和 Gemini。

像 Phi-3.5 这样的小型语言模型展示了人工智能效率的提高,并为 OpenAI 首席执行官 Sam Altman 创造廉价到无法计量的智能的目标增添了可信度。

Phi-3.5有什么新变化

? 新的Phi-3.5模型现已登上开放LLM排行榜!• Phi-3.5-MoE-instruct以35.1分的平均得分领先所有微软模型,在3B类别中排名第1,在所有聊天模型中排名第10• Phi-3.5-mini-instruct得分为27.4分,在3B类别中排名第3… pic.twitter.com/yNcOR2bcxX2024年8月22日

Phi-3.5有一个视觉模型版本,能理解图像而不仅仅是文本,还有一个专家模型混合版本,通过将学习任务分配到不同的子网络来提高处理效率。

这种专家模型混合版本超过了Gemini Flash 1.5,这是在多个基准测试中使用的免费的Gemini聊天机器人的模型,并且有一个大的128k上下文窗口。虽然这显著小于Gemini本身,但与ChatGPT和Claude相等。

安装此类极小模型的主要好处是,它可以与应用程序捆绑在一起,甚至可以安装在物联网设备上,比如智能门铃,从而实现不将数据发送到云端的人脸识别功能。

最小的模型使用512个Nvidia H100 GPU训练了3.4万亿个数据标记,耗时10天。专家模型混合版本包括了16个3.8b参数模型,使用了4.9万亿个数据标记,耗时23天进行训练。

Phi-3.5实际效果如何?

我在笔记本电脑上安装并运行了Phi-3.5的3.8亿参数的小版本,发现它的表现并没有基准测试暗示的那样印象深刻。虽然它的回答比较冗长,但说辞常常不尽如人意,并在一些简单测试中表现挣扎。

我向它提出一个经典问题:“写一个短的单句故事,其中每个词的首字母与前一个词的末字母相同。”即使在澄清后,它也彻底失败了。

我还没有尝试更大的专家模型混合版本。不过,从基准测试来看,它解决了我试用的模型版本中的一些问题。基准测试表明,它的输出质量类似于OpenAI的GPT-4o-mini,这是ChatGPT免费版本中提供的版本。

在STEM和社会科学领域似乎超过了GPT-4o-mini。其架构使它能够在管理不同语言的复杂AI任务时保持高效。

总结:

微软最近发布了其最新的小型语言模型Phi-3.5。相比上一代,它在多个重要指标上超越了Google、OpenAI、Mistral和Meta等行业巨头的小型模型。Phi-3.5提供3.8亿、4.15亿和41.9亿参数版本,均可免费下载并在本地工具如Ollama上运行。特别是在推理和数学基准测试方面表现优异,尽管个别测试中被GPT-4o-mini略胜一筹。Phi-3.5包括一个视觉模型版本和一个专家模型混合版本,通过分配子网络任务提升效率。尽管安装和运行此类小型模型的好处在于可与应用程序捆绑,适用于物联网设备,但性能仍有一定局限性,特别是在处理复杂任务时。然而,从基准测试来看,专家模型混合版本解决了许多小版本中的问题,其性能甚至比部分GPT-4o-mini版本更优秀,尤其在STEM和社会科学领域。

微软发布的Phi-3.5不仅在处理能力上实现了突破,更展示了小型语言模型在应用领域的巨大潜力。通过引入专家模型混合版本,Phi-3.5不仅提升了效率,还超越了许多竞品。而这正如光年AI在私域流量管理中所做的一样,以智能化、精准化的方式提升营销效率。用光年AI,轻松提升私域流量转化率,赢得市场先机!在这个AI驱动的时代,选择正确的工具不仅是提升生产力的关键,更是赢得竞争的核心。

注:本文转载自blog.csdn.net的AI新智元的文章"https://blog.csdn.net/2401_86753260/article/details/141470102"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

125
微软技术
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top