在当今快速发展的人工智能领域,本地部署大型语言模型(LLM)Agent正逐渐成为企业和研究者关注的焦点。本地部署不仅能够提供更高的数据安全性和隐私保护,还能减少对外部服务的依赖,提高响应速度和系统稳定性。本文将介绍如何通过Docker容器技术,结合Ollama和AnythingLLM两款工具,完成本地LLM Agent的部署和应用。
Ollama镜像部署
Ollama是一个开源的大型语言模型服务工具,它为用户在本地环境中快速部署和运行大型模型提供了便利。通过简洁的安装指南和一键命令,用户能够迅速地启动如Llama 2和Llama 3等开源大型语言模型。Ollama通过简化LLM部署和管理流程,使用户能够高效地在本地环境中操作大型语言模型。
本文以Windows系统下的Docker部署Ollama为例,通过镜像能够轻量化且更方便地管理虚拟环境。
首先在官网Docker Desktop: The #1 Containerization Tool for Developers | Docker下载Docker Desktop,下载后在DockerHub中可以找到ollama项目,拉取镜像。
这里注意Docker的安装程序默认安装在C盘,由于镜像文件非常大,所以如果想要更换安装路径可以在终端通过如下类似的命令安装:
"D:\Download\Docker Desktop Installer.exe" install --installation-dir="D:\Program\Docker"
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">
评论记录:
回复评论: