首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率

  • 25-02-22 05:00
  • 2068
  • 9384
blog.csdn.net

作者推荐

【动态规划】【字符串】【行程码】1531. 压缩字符串

本文涉及知识点

动态规划汇总
深度优先搜索 组合数学

LeetCode1467 两个盒子中球的颜色数相同的概率

桌面上有 2n 个颜色不完全相同的球,球上的颜色共有 k 种。给你一个大小为 k 的整数数组 balls ,其中 balls[i] 是颜色为 i 的球的数量。
所有的球都已经 随机打乱顺序 ,前 n 个球放入第一个盒子,后 n 个球放入另一个盒子(请认真阅读示例 2 的解释部分)。
注意:这两个盒子是不同的。例如,两个球颜色分别为 a 和 b,盒子分别为 [] 和 (),那么 [a] (b) 和 [b] (a) 这两种分配方式是不同的(请认真阅读示例的解释部分)。
请返回「两个盒子中球的颜色数相同」的情况的概率。答案与真实值误差在 10^-5 以内,则被视为正确答案
示例 1:
输入:balls = [1,1]
输出:1.00000
解释:球平均分配的方式只有两种:

  • 颜色为 1 的球放入第一个盒子,颜色为 2 的球放入第二个盒子
  • 颜色为 2 的球放入第一个盒子,颜色为 1 的球放入第二个盒子
    这两种分配,两个盒子中球的颜色数都相同。所以概率为 2/2 = 1 。
    示例 2:
    输入:balls = [2,1,1]
    输出:0.66667
    解释:球的列表为 [1, 1, 2, 3]
    随机打乱,得到 12 种等概率的不同打乱方案,每种方案概率为 1/12 :
    [1,1 / 2,3], [1,1 / 3,2], [1,2 / 1,3], [1,2 / 3,1], [1,3 / 1,2], [1,3 / 2,1], [2,1 / 1,3], [2,1 / 3,1], [2,3 / 1,1], [3,1 / 1,2], [3,1 / 2,1], [3,2 / 1,1]
    然后,我们将前两个球放入第一个盒子,后两个球放入第二个盒子。
    这 12 种可能的随机打乱方式中的 8 种满足「两个盒子中球的颜色数相同」。
    概率 = 8/12 = 0.66667
    示例 3:
    输入:balls = [1,2,1,2]
    输出:0.60000
    解释:球的列表为 [1, 2, 2, 3, 4, 4]。要想显示所有 180 种随机打乱方案是很难的,但只检查「两个盒子中球的颜色数相同」的 108 种情况是比较容易的。
    概率 = 108 / 180 = 0.6 。
    提示:
    1 <= balls.length <= 8
    1 <= balls[i] <= 6
    sum(balls) 是偶数

深度优先搜索

极端情况下,8种球,6种颜色。每种球选择0到6个,共7种选择。78 约等于5e6。再加上剪支,能过。
m_iCan 记录,合法选择的可能数。
m_iAns 记录,符合题意的可能数。
注意: 从ball[i]种选择m个求,是组合 C b a l l s [ i ] m \Large C_{balls[i]}^m Cballs[i]m​

代码

核心代码

template<class Result =int >
class CCombination
{
public:
	CCombination()
	{
		m_v.assign(1, vector<Result>(1,1));
	}
	Result Get(int sel, int total)
	{
		while (m_v.size() <= total)
		{
			int iSize = m_v.size();
			m_v.emplace_back(iSize + 1, 1);
			for (int i = 1; i < iSize; i++)
			{
				m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];
			}
		}
		return m_v[total][sel];
	}
protected:
	vector<vector<Result>> m_v;
};

class Solution {
public:
	double getProbability(vector<int>& balls) {
		m_iN = std::accumulate(balls.begin(), balls.end(), 0) / 2;
		DFS(balls, 0, 0, 0, 0,1);
		return (double)m_iiAns / m_iiSel;
	}
	void DFS(const vector<int>& balls,int iCur,int iHasSel,int iSelAll,int iSel0,long long iiMul)
	{
		if (iHasSel == m_iN)
		{
			m_iiSel += iiMul;
			if (iSelAll == iSel0 + balls.size()- iCur )
			{//余下的球全部不选择
				m_iiAns += iiMul;
			}
			return;
		}
		if (iCur >= balls.size())
		{
			return ;
		}
		for (int curSel = 0; (curSel <= balls[iCur])&&(curSel+iHasSel <= m_iN); curSel++)
		{
			DFS(balls, iCur + 1, curSel + iHasSel, iSelAll + (curSel == balls[iCur]), iSel0 + (0 == curSel),iiMul*m_com.Get(curSel, balls[iCur]));
		}
	}
	long long m_iN, m_iiSel=0, m_iiAns=0;
	CCombination<int> m_com;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	vector<int> balls;
	
	{
		Solution sln;
		balls = { 1, 1 };
		auto res = sln.getProbability(balls);
		assert(abs(res -  1 ) < 0.0001);
	}

	{
		Solution sln;
		balls = { 2,1,1 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.66667) < 0.0001);
	}

	{
		Solution sln;
		balls = { 1,2,1,2 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.6) < 0.0001);
	}
	{
		Solution sln;
		balls = { 6, 6, 6, 6, 6, 6, 6, 6 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.85571) < 0.0001);
	}
	
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

动态规划

动态规划的状态表示

pre[sel][c]记录可能排列数量。sel表示第一个盒子的球数,c表示颜色差。c等于0,表示左边全选的球的数量 比 右边全先的求的数量 少6。 c = 全部在第一个盒子的颜色数- 全部在第二个盒子的颜色+6。
不在两种颜色相差8的情况:那样一个盒子为空,和n个球矛盾。
不存在颜色相差7的情况:全选7种颜色,至少有7个球。全先1种颜色顶多6个球。无法相等。
存在相差6的情况:{** 1 1 1 1 1 1 ** 3 3} 。前6个球是1,全选。
状态数:O(13n × \times ×balls.size()),n是球数的一半。
转移方程时间复杂度:O(bass[i])
故总时间复杂度O(13n × \times ×balls.size() × \times × bass[i])

class Solution {
public:
	double getProbability(vector<int>& balls) {		
		const int n = std::accumulate(balls.begin(), balls.end(), 0) / 2;
		vector<vector<long long>> pre(n + 1, vector<long long>(13, 0));
		pre[0][6] = 1;
		for (const auto& b : balls)
		{
			vector<vector<long long>> dp(n + 1, vector<long long>(13, 0));
			for (int col = 0; col < 13; col++)
			{
				for (int preSel = 0; preSel <= n; preSel++)
				{
					for (int curSel = 0; (curSel <= b) && (preSel + curSel <= n); curSel++)
					{
						int col1 = col + (curSel == b) - (curSel == 0);
						if ((col1 >= 0) && (col1 < 13))
						{
							dp[preSel + curSel][col1] += pre[preSel][col]*m_com.Get(curSel,b);
						}
					}
				}
			}
			pre.swap(dp);
		}
		long long llAns = pre.back()[6], llSel = std::accumulate(pre.back().begin(), pre.back().end(),0LL);
		return (double)llAns / llSel;
	}
	CCombination<int> m_com;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

2023年2月版

class Solution {
public:
double getProbability(const vector& balls) {
const int iTotal = std::accumulate(balls.begin(), balls.end(), 0);
m_c = balls.size();
vector combinations(6 + 1, vector(6 + 1, 1));
for (int i = 1; i <= 6; i++)
{
for (int j = 1; j < i; j++)
{
combinations[i][j] = combinations[i - 1][j - 1] + combinations[i - 1][j];
}
}
vector pre(13, vector(iTotal + 1));
pre[6][0] = 1;
for (int i = 0; i < balls.size(); i++)
{
vector dp(13, vector(iTotal + 1));
for (int colorDiff = 0; colorDiff < 13; colorDiff++)
{
for (int selBallNum = 0; selBallNum <= iTotal; selBallNum++)
{
if (0 == pre[colorDiff][selBallNum])
{
continue;
}
for (int k = 0; k <= balls[i]; k++)
{
int iNewColorDiff = colorDiff;
if (0 == k)
{
iNewColorDiff–;
}
if (balls[i] == k)
{
iNewColorDiff++;
}
if ((iNewColorDiff<0) || (iNewColorDiff >12))
{
continue;
}
const int iNewSelBallNum = selBallNum + k;
if ( iNewSelBallNum > iTotal)
{
continue;
}
dp[iNewColorDiff][iNewSelBallNum] += pre[colorDiff][selBallNum] * combinations[balls[i]][k];
}
}
}
pre.swap(dp);
}
double dNum = 0, dEqualNum = 0;
for (int colorDiff = 0; colorDiff < 13; colorDiff++)
{
const int selBallNum = iTotal / 2;
//for (int selBallNum = 0; selBallNum <= iTotal; selBallNum++)
{
const double dAdd = (double)pre[colorDiff][selBallNum] ;
dNum += dAdd;
if (6 == colorDiff)
{
dEqualNum += dAdd;
}
}
}
return (double)dEqualNum / dNum;
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业

。也就是我们常说的专业的人做专业的事。 |
|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览60496 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/135904160"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top