首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【动态规划】【字符串】【行程码】1531. 压缩字符串

  • 25-02-22 08:41
  • 3492
  • 10036
blog.csdn.net

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode 1531. 压缩字符串 II

行程长度编码 是一种常用的字符串压缩方法,它将连续的相同字符(重复 2 次或更多次)替换为字符和表示字符计数的数字(行程长度)。例如,用此方法压缩字符串 “aabccc” ,将 “aa” 替换为 “a2” ,“ccc” 替换为` “c3” 。因此压缩后的字符串变为 “a2bc3” 。
注意,本问题中,压缩时没有在单个字符后附加计数 ‘1’ 。
给你一个字符串 s 和一个整数 k 。你需要从字符串 s 中删除最多 k 个字符,以使 s 的行程长度编码长度最小。
请你返回删除最多 k 个字符后,s 行程长度编码的最小长度 。
示例 1:
输入:s = “aaabcccd”, k = 2
输出:4
解释:在不删除任何内容的情况下,压缩后的字符串是 “a3bc3d” ,长度为 6 。最优的方案是删除 ‘b’ 和 ‘d’,这样一来,压缩后的字符串为 “a3c3” ,长度是 4 。
示例 2:
输入:s = “aabbaa”, k = 2
输出:2
解释:如果删去两个 ‘b’ 字符,那么压缩后的字符串是长度为 2 的 “a4” 。
示例 3:
输入:s = “aaaaaaaaaaa”, k = 0
输出:3
解释:由于 k 等于 0 ,不能删去任何字符。压缩后的字符串是 “a11” ,长度为 3 。
提示:
1 <= s.length <= 100
0 <= k <= s.length
s 仅包含小写英文字母

动态规划

预处理

将s转成arr,每个元素是{字符,长度}。
比如:aabbaa变成{{‘a’,2},{'b",2},{‘a’,2}}
长度0,表示0个字符。长度1,表示1个字符。长度2,表示2到9.长度3,表示10到99,长度4,表示100及以上。

动态规划的状态表示

pre[j] 表示处理完arr[0,i)后, 用去j个字符的最短行程码。
dp[j] 表示处理完arr[0,i]后, 用去j个字符的最短行程码。
pre2[ch][j][m] 表示处理完arr[0,i)后,,以ch+'a’结尾,用去j个字符,最后有m个ch的最短行程码。
dp2表示处理完arr[0,i]…

动态规划的转移方程

arr[i]没有和前面的元素合并:
枚举j,枚举减少长度:0、1、2、3、4
arr[j]和前面的合并:
枚举j,m 再枚举减少长度:0、1、2、3 、4
合并示例:aa d d ‾ \underline{dd} dd​aa 删除dd后,就是4个aa了。

动态规划的初始状态

pre[0]=0,其它100。
pre2全部100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

pre.back().back()

代码

核心代码

class Solution {
public:
	int getLengthOfOptimalCompression(string s, int k) {
		const int lenArr = s.length();
		vector<pair<char, int>> arr;
		for (int left = 0, i = 0; i <= s.length(); i++)
		{
			if ((i >= s.length()) || (s[left] != s[i]))
			{
				arr.emplace_back(s[left], i - left);
				left = i;
			}
		}
		vector<int> vLen = { 0,1,2,10,100 };
		auto GetCodeLen = [&vLen](int len)
		{
			int i = vLen.size() - 1;
			for (; (i >= 0) && (len < vLen[i]); i--);
			return i;
		};
		auto MaxLen = [&vLen](int len)
		{
			return vLen[len + 1] - 1;
		};
		vector<int> pre(lenArr + 1, 100);
		pre[0] = 0;
		vector<vector<vector<int>>> dp3(26, vector<vector<int>>(lenArr+1, vector<int>(lenArr + 1, 100)));
		for (const auto& [ch, cnt] : arr)
		{
			vector<int> dp(lenArr + 1, 100);
			auto& dp2 = dp3[ch - 'a'];
			auto pre2 = dp2;
			auto Update = [&lenArr,&dp,&dp2](int j, int iCodeLen,const char& chEnd,int iEndLen)
			{
				if (j > lenArr)
				{
					return;
				}
				dp[j] = min(dp[j], iCodeLen);
				if (iEndLen <= lenArr)
				{
					dp2[j][iEndLen] = min(dp2[j][iEndLen], iCodeLen);
				}
			};			
			//处理没合并
			for (int j = 0; j <= lenArr; j++)
			{	
				const int curCodeLen = GetCodeLen(cnt);
				Update(j + cnt, pre[j] + curCodeLen,ch,cnt);
				for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--)
				{//处理 行程妈缩短1,2...
					Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2,ch, MaxLen(curCodeLen2));
				}
			}
			
			for (int j = 0; j <= lenArr; j++)
			{
				for (int m = 0; m <= j; m++)
				{
					const int curCodeLen = GetCodeLen(cnt+m );
					Update(j + cnt, pre2[j][m] - GetCodeLen(m) + GetCodeLen(m + cnt), ch, m + cnt);
					for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--)
					{//处理 行程妈缩短1,2...
						Update(j -m + MaxLen(curCodeLen2), pre2[j][m] - GetCodeLen(m) + curCodeLen2,ch, MaxLen(curCodeLen2));
					}
				}
			}
			pre.swap(dp);	
		}
		return *std::min_element(pre.begin() + pre.size() - k-1, pre.end());
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	string s;
	int k;
	{
		Solution sln;
		s = "aaa", k = 2;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(1, res);
	}
	{
		Solution sln;
		s = "aaab", k = 2;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(2, res);
	}
	{
		Solution sln;
		s = "aaabcccd", k = 2;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(4, res);
	}
	{
		Solution sln;
		s = "aabbaa", k = 2;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(2, res);
	}
	{
		Solution sln;
		s = "aaaaaaaaaaa", k = 0;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(3, res);
	}
	{
		Solution sln;
		s = "spnskpulpsiqagreoajsltdrdlnpsdqapmsdlnlirasgfijafeoqjnddpaifsqpghshclqummgootsmkcgneofrkboirkplqijoi", k = 25;
		auto res = sln.getLengthOfOptimalCompression(s, k);
		Assert(3, res);
	}
	
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

动态规划优化

前一个解法的空间复杂度在过与不过的边缘。

动态规划的状态表示

dp[i][j] 表示处理了arr[0,i),选择了j个字符的最短行程码。

动态规划的转移方程

分两种情况: 和前面的项目合并,和前面的项不合并。细节同上。

动态规划的初始值

dp[0][0]=0,其它100。

动态规划的填表顺序

i从小到大,j从小到大。

动态规划的返回值

dp.back的后k+1个元素的最小值。

优化后的代码

class Solution {
public:
	int getLengthOfOptimalCompression(string s, int k) {
		const int lenArr = s.length();
		vector<pair<char, int>> arr;
		for (int left = 0, i = 0; i <= s.length(); i++)
		{
			if ((i >= s.length()) || (s[left] != s[i]))
			{
				arr.emplace_back(s[left], i - left);
				left = i;
			}
		}
		vector<int> vLen = { 0,1,2,10,100 };
		auto GetCodeLen = [&vLen](int len)
		{
			int i = vLen.size() - 1;
			for (; (i >= 0) && (len < vLen[i]); i--);
			return i;
		};
		auto MaxLen = [&vLen](int len)
		{
			return vLen[len + 1] - 1;
		};
		vector<vector<int>> dp(arr.size() + 1, vector<int>(lenArr + 1, 100));
		dp[0][0] = 0;
		int i = -1;
		for (const auto& [ch, cnt] : arr)
		{
			i++;
			auto& pre = dp[i];
			auto& cur = dp[i + 1];
			auto Update = [&lenArr, &cur](int j, int iCodeLen)
			{
				if (j > lenArr)
				{
					return;
				}
				cur[j] = min(cur[j], iCodeLen);
			};
			//处理没合并
			for (int j = 0; j <= lenArr; j++)
			{
				const int curCodeLen = GetCodeLen(cnt);
				Update(j + cnt, pre[j] + curCodeLen);
				for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--)
				{//处理 行程妈缩短1,2...
					Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2);
				}
			}

			int cnt2 = 0;
			for (int m = i ; m >= 0; m--)
			{
				if (arr[m].first != ch)
				{
					continue;
				}
				cnt2 += arr[m].second;//合并后的字符数		
				const int curCodeLen = GetCodeLen(cnt2);
				for (int j = 0; j <= lenArr; j++)
				{
					Update(j + cnt2, dp[m][j] + curCodeLen);
					for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--)
					{//处理 行程妈缩短1,2...
						Update(j + MaxLen(curCodeLen2), dp[m][j] + curCodeLen2);
					}
				}
			}			
		}
		return *std::min_element(dp.back().begin() + dp.back().size() - k - 1, dp.back().end());
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

动态规划三

arr数组,少许提升性能,但增加了复杂度,不采用。

动态规划的状态

dp[i][j]表示 从s[0,i)中删除j个字符 最短的行程码。

动态规划的转移方程

令x = dp[i+1][j]
情况一:删除s[i+1]
那x等于dp[i][j-1] 公式一
情况二:不删除,且可能和前面的字符结合后,删除。
不市一般性,令s[i]=‘a’,且它的前面只有三个’a’,小标分别为i1,i2,i3。
情况a:
s[i]没有和其它’a’结合,则x= dp[i][j]+GetCodeLen (1)。 公式二
情况b:
s[i]和s[i3]结合,s(i3,i)之间非’a’的数量为diff,全部删除。
b1: i和i3 都没删除。 x = dp[i3][j-diff] + GetCodeLen(2) → \rightarrow → dp[i-diff-1][j-diff] + GetCodeLen(2) 公式三
b2: i3删除。x = dp[i3][j-diff-1] + GetCodeLen(1) → \rightarrow → dp[i-diff-1][j-diff-1] + GetCodeLen(1) 就是公式二和公式一结合。
情况c:
s[i]和s[i2] s[i3]结合: s(i2,i)之间非’a’的数量为diff2,全部删除。
c1,不删除’a’。 dp[i2][j-diff2] + GetCodeLen(3) ** 公式四**
c2,删除一个’a’ dp[i2][j-diff2-1] + GetCodeLen(2) → \rightarrow → dp[i-diff2-2][j-diff2-1]+GetCodeLen(2) 就是公式三和公式的结合,不需要枚举。
c3 删除两个’a’。dp[i-diff2-2][j-diff2-2] + GetCodeLen(1) 就是公式二和公式一结合,不用枚举。
总结:
无论多少个字符结合,全删除就是公式一。
保留一个就是公式二。
保留三个就是公式三。
…
m个字符结合,只需要枚举m个字符,mm个字符(mm < m )枚举mm个字符结合的时候考虑。

可以这样理解:
m个字符合并后,删除m-mm个,保留mm个。 保留任意mm个都一样,那保留后mm个。所以只需要枚举:保留后mm个。

动态规划的初始值

dp[0][0] = 0,其它100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:
	int getLengthOfOptimalCompression(string s, int k) {
		const int n = s.length();		
		vector<int> vLen = { 0,1,2,10,100 };
		auto GetCodeLen = [&vLen](int len)
		{
			int i = vLen.size() - 1;
			for (; (i >= 0) && (len < vLen[i]); i--);
			return i;
		};
		vector<vector<int>> dp(n + 1, vector<int>(k + 1, 100));
		dp[0][0] = 0;
		for (int i = 0; i < n; i++)
		{
			//处理删除s[i]
			for (int j1 = 1; j1 <= min(i+1,k); j1++)
			{
				dp[i+1][j1] = dp[i][j1-1];
			}
			//处理不删除s[i]
			for (int same = 0, diff = 0, preLen = i;preLen>=0; preLen--)
			{
				if (s[preLen] == s[i])
				{
					same++;
					for (int j1 = diff; j1 <= min(i + 1, k); j1++)
					{
						dp[i + 1][j1] = min(dp[i + 1][j1], dp[i + 1 - same - diff][j1 - diff] + GetCodeLen(same));
					}					
				}
				else
				{
					diff++;
				}
			}
		}		
		return *std::min_element(dp.back().begin() , dp.back().end());
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

2023年2月 第一版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
int pre[100 + 1][27][101];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][101];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(100, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre,dp, sizeof(pre));
}
int iMin = INT_MAX;
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
iMin = 4;
}
}
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月 第二版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/135872367"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top