首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

opencv进阶学习笔记11:cannny边缘检测,直线检测,圆检测

  • 23-09-22 21:02
  • 4083
  • 10641
blog.csdn.net

基础版笔记传送门
python3+opencv学习笔记汇总目录(适合基础入门学习)
进阶版笔记目录链接:
python+opencv进阶版学习笔记目录(适合有一定基础)

cannny边缘检测

基础版边缘讲解链接:
opencv学习笔记18:canny算子边缘检测原理及其函数使用

1cannny算法介绍

非极大值抑制:在获得梯度和方向,去除所有不是边界的点。实现方向:逐渐遍历像素点,判断当前像素点是否是周围像素点中具有相同方向梯度的最大值。是保留,不是则为0.

cannny代码实现
edges=cv2.Canny(image,threshold1,threshold2)
edges:处理结果
image:原始图像
threshold1:minVal
threshold2:maxVal
如果想让边界细节更多,则把threshold1和threshold2设小些。

import numpy as np
import cv2 as cv

def edge_demo(image):
    blurred = cv.GaussianBlur(image, (3, 3), 0)#高斯模糊,降低噪声。canny对噪声比较敏感,也不能模糊太厉害,去掉了边缘信息。
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)#转化为灰度图
    # X Gradient 求x梯度
    xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
    # Y Gradient #求y梯度
    ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
    #edge
    edge_output = cv.Canny(xgrad, ygrad, 50, 150)
    #edge_output = cv.Canny(gray, 50, 150)
    cv.imshow("Canny Edge", edge_output)

    dst = cv.bitwise_and(image, image, mask=edge_output)#生成彩色边界图
    cv.imshow("Color Edge", dst)
print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("duoren.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
edge_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

blurred = cv.GaussianBlur(image, (3, 3), 0)#高斯模糊,降低噪声。canny对噪声比较敏感,也不能模糊太厉害,去掉了边缘信息。
edge_output = cv.Canny(xgrad, ygrad, 50, 150)
#edge_output = cv.Canny(gray, 50, 150)
是相同的
高阈值应该是低阈值的3倍

直线检测

一、原理介绍:

1、对于直角坐标系中的任意一点A(x0,y0),经过点A的直线满足Y0=k*X0+b.(k是斜率,b是截距)

2、那么在X-Y平面过点A(x0,y0)的直线簇可以用Y0=k*X0+b表示,但对于垂直于X轴的直线斜率是无穷大的则无法表示。因此将直角坐标系转换到极坐标系就能解决该特殊情况。

3、在极坐标系中表示直线的方程为ρ=xCosθ+ySinθ(ρ为原点到直线的距离),如图所示:

直线检测代码实现方法1
1、标准霍夫线变换
void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )
参数:
image:边缘检测的输出图像. 它应该是个灰度图 (但事实上是个二值化图)
lines:储存着检测到的直线的参数对 的容器,存储的是rho,theta
rho:参数极径 以像素值为单位的分辨率. 我们使用 1 像素.
theta:参数极角 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
theta:要”检测” 一条直线所需最少的的曲线交点
srn and stn: 参数默认为0.

import cv2 as cv
import numpy as np


def line_detection(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)#转化为灰度
    edges = cv.Canny(gray, 50, 150, apertureSize=3)#求取边缘 窗口大小apertureSize=3
    lines = cv.HoughLines(edges, 1, np.pi/180, 200)#np.pi/180每次偏转1度
    for line in lines:
        #print(type(lines))
        print(line)
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0+1000*(-b))
        y1 = int(y0+1000*(a))
        x2 = int(x0-1000*(-b))
        y2 = int(y0-1000*(a))
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv.imshow("image-lines", image)

print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("zhiixian.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
line_detection(src)
cv.waitKey(0)

cv.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

直线检测代码实现方法2
2、统计概率霍夫线变换
void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold,double minLineLength=0, double maxLineGap=0 )
参数:
image: 边缘检测的输出图像. 它应该是个灰度图 (但事实上是个二值化图) *
lines: 储存着检测到的直线的参数对 的容器,也就是线段两个端点的坐标
rho :  参数极径 以像素值为单位的分辨率. 我们使用 1 像素.
theta: 参数极角 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
threshold: 要”检测” 一条直线所需最少的的曲线交点
minLinLength: 能组成一条直线的最少点的数量. 点数量不足的直线将被抛弃.线段的最小长度
maxLineGap:线段上最近两点之间的阈值

import cv2 as cv
import numpy as np


def line_detect_possible_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    edges = cv.Canny(gray, 50, 150, apertureSize=3)
    lines = cv.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=50, maxLineGap=10)
    for line in lines:
        print(type(line))
        x1, y1, x2, y2 = line[0]
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv.imshow("line_detect_possible_demo", image)
print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("zhiixian.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
line_detect_possible_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

圆检测

1原理
圆周上任意三点所确定的圆,经Hough变换后在三维参数空间应对应一点。遍历圆周上所有点,任意三个点所确定的候选圆进行
投票。遍历结束后,得票数最高点(理论上圆周上任意三点确定的圆在Hough变换后均对应三维参数空间中的同一点)所确定的圆
即为该圆周上,绝大多数点所确定的圆(以下称为当选圆),即绝大多数点均在该当选圆的圆周上,以此确定该圆。

圆形的表达式为(x−xcenter)2+(y−ycenter)2=r2(x−xcenter)2+(y−ycenter)2=r2,一个圆环的确定需要三个参数。那么霍夫变换的累加器必须是三维的,但是这样的计算效率很低。
这里opencv中使用霍夫梯度的方法,这里利用了边界的梯度信息。
首先对图像进行canny边缘检测,对边缘中的每一个非0点,通过Sobel算法计算局部梯度。那么计算得到的梯度方向,实际上就是圆切线的法线。三条法线即可确定一个圆心,同理在累加器中对圆心通过的法线进行累加,就得到了圆环的判定。

2opencv API

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。
基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:
检测边缘,发现可能的圆心
基于第一步的基础上从候选圆心开始计算最佳半径大小

cv2.HoughCircles函数的参数

cv2.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)

image为输入图像,需要灰度图

method为检测方法,常用CV_HOUGH_GRADIENT

dp为检测内侧圆心的累加器图像的分辨率于输入图像之比的倒数,如dp=1,累加器和输入图像具有相同的分辨率,如果dp=2,累计器便有输入图像一半那么大的宽度和高度

minDist表示两个圆之间圆心的最小距离,圆心距离小于mimDist认为为同一个圆

param1有默认值100,它是method设置的检测方法的对应的参数,对当前唯一的方法霍夫梯度法cv2.HOUGH_GRADIENT,它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半

param2有默认值100,它是method设置的检测方法的对应的参数,对当前唯一的方法霍夫梯度法cv2.HOUGH_GRADIENT,它表示在检测阶段圆心的累加器阈值,它越小,就越可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了

minRadius有默认值0,圆半径的最小值

maxRadius有默认值0,圆半径的最大值

import cv2 as cv
import numpy as np


def detect_circles_demo(image):
    dst = cv.pyrMeanShiftFiltering(image, 10, 100)#均值偏移滤波
    cv.imshow("dst", dst)
    cimage = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)#灰度图
    circles = cv.HoughCircles(cimage, cv.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
    circles = np.uint16(np.around(circles))#取整
    for i in circles[0, :]:
        cv.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2)#在原图上画圆,圆心,半径,颜色,线框
        cv.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2)#在原图上画圆心 
    cv.imshow("circles", image)

print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("coins.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
detect_circles_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

如果没有下面这一行

dst = cv.pyrMeanShiftFiltering(image, 10, 100)#均值偏移滤波
  • 1

结果

原理:
meanShfit均值漂移算法是一种通用的聚类算法,它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为中心继续执行上述迭代过程,直至最终收敛。可以利用均值偏移算法的这个特性,实现彩色图像分割,
Opencv中对应的函数是pyrMeanShiftFiltering。这个函数严格来说并不是图像的分割,而是图像在色彩层面的平滑滤波,它可以中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的颜色区域,
第一个参数src,输入图像,8位,三通道的彩色图像,并不要求必须是RGB格式,HSV、YUV等Opencv中的彩色图像格式均可;

第二个参数dst,输出图像,跟输入src有同样的大小和数据格式;

第三个参数sp,定义的漂移物理空间半径大小;

第四个参数sr,定义的漂移色彩空间半径大小;

第五个参数maxLevel,定义金字塔的最大层数;

第六个参数termcrit,定义的漂移迭代终止条件,可以设置为迭代次数满足终止,迭代目标与中心点偏差满足终止,或者两者的结合;

pyrMeanShiftFiltering函数的执行过程是这样的:

迭代空间构建
求取迭代空间的向量并移动迭代空间球体后重新计算向量,直至收敛(一个图像,然后选取一个球形,求得所有点相对于中心点的色彩向量之和后,移动选取的球形继续操作,有点类似卷积层)
更新输出图像dst上对应的初始原点P0的色彩值为本轮迭代的终点Pn的色彩值,如此完成一个点的色彩均值漂移。
4.输入图像src上其他点,依次执行步骤1,、2、3,遍历完所有点位后,整个均值偏移色彩滤波完成

半径越大,图像的细节就丢失的越多

电气专业的计算机萌新,写博文不容易。如果你觉得本文对你有用,请点个赞再走,谢谢。

文章知识点与官方知识档案匹配,可进一步学习相关知识
OpenCV技能树首页概览20473 人正在系统学习中
注:本文转载自blog.csdn.net的总裁余(余登武)的文章"https://blog.csdn.net/kobeyu652453/article/details/107376051"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top