首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

opencv学习笔记11:图像滤波(均值,方框,高斯,中值)

  • 23-09-22 21:01
  • 2547
  • 7969
blog.csdn.net

为什么要使用滤波

消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
如下图,左图带有椒盐噪声,右图为使用中值滤波处理后的图片。

图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。

python +opencv讲解

均值滤波

含义
如图:如果我们想对红色点进行处理,则它新值等于周围N乘N个像素点的平均(包括自身)

用表达式表达:

扩展到对整个图像进行均值滤波
注意:边界无法使用卷积核,直接保留边界像素到新图中。

实现方法:
处理结果=cv2.blur(原始图像,核大小)

核大小:以(宽度,高度)的元祖
效果:使图像变模糊啦。能处理被椒盐攻击过的照片。

import cv2
a=cv2.imread('lenacolor.png')#
b=cv2.blur(a,(8,8))
cv2.imshow('original',a)
cv2.imshow('result',b)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

方框滤波

实现方法:函数boxFilter
处理结果=cv2.boxFilter(原始图像,目标图像深度,核大小,normalize属性)

目标图像深度: int类型的目标图像深度,-1表示与原始图像一致
核大小:(宽度,高度)元祖
normalize:是否对目标图像进行归一化处理
normalize为true 时与均值滤波一样,为false时表示任意一个点的像素为周围像素点的和,容易发生溢出超过255

normalize=1,1为true

import cv2
a=cv2.imread('lenacolor.png')#
b=cv2.boxFilter(a,-1,(5,5),normalize=1)
cv2.imshow('original',a)
cv2.imshow('result',b)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

结果:

normalize=0,0为false
结果中只有几个点不是白色

减少核大小为(2,2)normalize=0

高斯滤波

含义:
中心点权重高,越远越低

实现方法:GaussianBlur
处理结果=cv2.GaussianBlur(原始图像src,核函数大小ksize,sigmaX)

核函数大小ksize:(N,N)必须是奇数
sigmaX:控制x方向方差,控制权重,一般取0,它自己去计算方差。y轴方差和x一致
在这里插入图片描述

import cv2
a=cv2.imread('lenacolor.png')#
b=cv2.GaussianBlur(a,(3,3),0)
cv2.imshow('original',a)
cv2.imshow('result',b)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

中值滤波

使用像素点邻域附近的像素的中值代替该点的像素值。通俗点来说,在这个像素的左边找五个像素点,右边找五个像素点,将这些像素进行排序,排序过后产生一个中值,用中间大小的值,来代替该像素的值。
中值滤波可以有效的去除斑点和椒盐噪声。但是效率低,其运算时间 为均值滤波的五倍以上。

实现方法:medianBlur
目标图像=cv2.medianBlur(原始图像,intksize)
intksize:核函数,必须为奇数.

import cv2
a=cv2.imread('lenacolor.png')#
b=cv2.medianBlur(a,5)
cv2.imshow('original',a)
cv2.imshow('result',b)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

总目录链接:
python3+opencv学习笔记汇总目录(适合基础入门学习)
电气专业的计算机小白,写博文不容易,如果你觉得本文不错,请点个赞支持下,谢谢。

文章知识点与官方知识档案匹配,可进一步学习相关知识
OpenCV技能树图像增强和滤波图像滤波20473 人正在系统学习中
注:本文转载自blog.csdn.net的总裁余(余登武)的文章"https://blog.csdn.net/kobeyu652453/article/details/107134459"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top