前几天一直在研究形态学在图像处理中的应用,查了很多资料。首先关于图像形态学的具体理论知识,课参考如下博客:
http://iyenn.com/index/link?url=http://www.cnblogs.com/slysky/archive/2011/10/16/2214015.html
http://iyenn.com/index/link?url=http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
形态学操作及其公式小结:
上述操作是对二值图像进行操作的,当腐蚀、膨胀是最基本的操作,其他操作是基于这两个操作和集合论的组合。对于灰度图像来说,腐蚀和膨胀也是基本其他操作的基础,但是灰度图像腐蚀和膨胀不同于二值图像的腐蚀和膨胀。
灰度图像的腐蚀和膨胀定义如下:
(1)腐蚀:当结构元素b的原点位于(x,y)处时,用b对图像f进行腐蚀,是查找f中与结构元素b重合区域灰度级别最小的值,然后把最小的灰度值赋值给点(x,y):
(2)膨胀:当结构元素b的原点位于(x,y)处时,用b的反射(-b)对图像f进行腐蚀,是查找f中与结构元素b的反射重合区域灰度级别最大的值,然后把最大的灰度值赋值给点(x,y):
关于灰度图像的应用有:
(1)形态学梯度:
(2)顶帽变换:
(3)底帽变换:
具体代码如下:
#include
#include
#include
using namespace cv;
//把灰度图像转化为二值图像
Mat changeToBinaryImage(Mat grayImage)
{
Mat binaryImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
//转化为二值图像
for (int i = 0; i < grayImage.rows; i++)
{
for (int j = 0; j < grayImage.cols; j++)
{
if (grayImage.data[i*grayImage.step + j]>100)
{
binaryImage.data[i*grayImage.step + j] = 255;
}
else
{
binaryImage.data[i*grayImage.step + j] = 0;
}
}
}
imshow("binaryImage", binaryImage);
return binaryImage;
}
//创建结构元素
//一般结构元素 关于原点对称
//Mat createSE()
//{
// int a[3][3]={ 0,1,0,
// 1,1,1,
// 0,1,0};
// Mat structureElement(3, 3, CV_8UC1, a);
//}
//二值图像腐蚀操作
Mat binaryErosion(Mat binaryImage, Mat se)
{
//二值图像移动
Mat window(se.rows, se.cols, CV_8UC1);
//定义一个矩阵,存储腐蚀后的图像
Mat binaryErosionImage(binaryImage.rows, binaryImage.cols, CV_8UC1, Scalar(0));
for (int i = (se.rows-1)/2; i < binaryImage.rows-(se.rows-1)/2; i++)
{
for (int j = (se.cols - 1) / 2; j < binaryImage.cols - (se.cols - 1) / 2; j++)
{
//先设置第i行第j列像素值为255,即白色
binaryErosionImage.data[i*binaryImage.step + j] = 255;
for (int row = 0; row < se.rows; row++)
{
for (int col = 0; col < se.cols; col++)
{
//把se对应的元素赋值到与se结构相同的矩阵中
window.data[row*window.step + col] = binaryImage.data[(i + row - (window.rows - 1) / 2)*binaryImage.step + (j + col - (window.cols - 1) / 2)];
}
}
//比较se与window中的像素值
int row, col;
for (row = 0; row < se.rows; row++)
{
for (col = 0; col < se.cols; col++)
{
if (se.data[row*se.step + col] != window.data[row*se.step + col])
{
break;
}
}
if (col == se.cols)
{
continue;
}
else
{
break;
}
}
if (row == se.rows&&col == se.cols)
{
binaryErosionImage.data[i*binaryImage.step + j] = 0;
}
}
}
//imshow("binaryErosionImage", binaryErosionImage);
return binaryErosionImage;
}
//二值图像膨胀操作
Mat binaryDilation(Mat binaryImage, Mat se)
{
//二值图像移动
Mat window(se.rows, se.cols, CV_8UC1);
//定义一个矩阵,存储膨胀后的图像
Mat binaryDilationImage(binaryImage.rows, binaryImage.cols, CV_8UC1, Scalar(0));
for (int i = (se.rows - 1) / 2; i < binaryImage.rows - (se.rows - 1) / 2; i++)
{
for (int j = (se.cols - 1) / 2; j < binaryImage.cols - (se.cols - 1) / 2; j++)
{
//先设置第i行第j列像素值为255,即白色
binaryDilationImage.data[i*binaryImage.step + j] = 255;
for (int row = 0; row < se.rows; row++)
{
for (int col = 0; col < se.cols; col++)
{
//把se对应的元素赋值到与se结构相同的矩阵中
window.data[row*window.step + col] = binaryImage.data[(i + row - (window.rows - 1) / 2)*binaryImage.step + (j + col - (window.cols - 1) / 2)];
}
}
//比较se与window中的像素值
//只要有一个相匹配 就把像素值设为0,即置黑
int flag = 0; //标记是否有对应相等的像素值:0表示没有,1表示有
int row, col;
for (row = 0; row < se.rows; row++)
{
for (col = 0; col < se.cols; col++)
{
if (se.data[row*se.step + col] == window.data[row*se.step + col])
{
flag = 1;
break;
}
}
if (flag)
{
break;
}
}
if (flag)
{
//如果有交集,就设置为黑,即0
binaryDilationImage.data[i*binaryImage.step + j] = 0;
}
}
}
//imshow("binaryDilationImage", binaryDilationImage);
return binaryDilationImage;
}
//灰度图像腐蚀操作
Mat grayErosion(Mat grayImage,Mat se)
{
//结构元素移动时所对应的源图像区域
Mat window(se.rows, se.cols, CV_8UC1);
//定义一个矩阵,存储腐蚀后的图像
Mat grayErosionImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
for (int i = (se.rows - 1) / 2; i < grayImage.rows - (se.rows - 1) / 2; i++)
{
for (int j = (se.cols - 1) / 2; j < grayImage.cols - (se.cols - 1) / 2; j++)
{
//先设置第i行第j列像素值为255,即白色
grayErosionImage.data[i*grayImage.step + j] = 255;
for (int row = 0; row < se.rows; row++)
{
for (int col = 0; col < se.cols; col++)
{
//把se对应的元素赋值到与se结构相同的矩阵window中
window.data[row*window.step + col] = grayImage.data[(i + row - (window.rows - 1) / 2)*grayImage.step + (j + col - (window.cols - 1) / 2)];
}
}
//比较se与window中的像素值
//在灰度图像中,腐蚀是取window中最小的值赋值给原点所对用的像素
int minPixel = 255;
int row, col;
for (row = 0; row < se.rows; row++)
{
for (col = 0; col < se.cols; col++)
{
if (window.data[row*se.step + col] < minPixel)
{
minPixel = window.data[row*se.step + col];
}
}
}
grayErosionImage.data[i*grayImage.step + j] = minPixel;
}
}
/*imshow("grayErosionImage", grayErosionImage);*/
return grayErosionImage;
}
//灰度图像膨胀操作
Mat grayDilation(Mat grayImage,Mat se)
{
//结构元素移动时所对应的源图像区域
Mat window(se.rows, se.cols, CV_8UC1);
//定义一个矩阵,存储腐蚀后的图像
Mat grayDilationImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
for (int i = (se.rows - 1) / 2; i < grayImage.rows - (se.rows - 1) / 2; i++)
{
for (int j = (se.cols - 1) / 2; j < grayImage.cols - (se.cols - 1) / 2; j++)
{
//先设置第i行第j列像素值为255,即白色
grayDilationImage.data[i*grayImage.step + j] = 255;
for (int row = 0; row < se.rows; row++)
{
for (int col = 0; col < se.cols; col++)
{
//把se对应的元素赋值到与se结构相同的矩阵window中
window.data[row*window.step + col] = grayImage.data[(i + row - (window.rows - 1) / 2)*grayImage.step + (j + col - (window.cols - 1) / 2)];
}
}
//比较se与window中的像素值
//在灰度图像中,膨胀是取window中最大的值赋值给原点所对用的像素
int maxPixel = 0;
int row, col;
for (row = 0; row < se.rows; row++)
{
for (col = 0; col < se.cols; col++)
{
if (window.data[row*se.step + col] > maxPixel)
{
maxPixel = window.data[row*se.step + col];
}
}
}
grayDilationImage.data[i*grayImage.step + j] = maxPixel;
}
}
/*imshow("grayDilationImage", grayDilationImage);*/
return grayDilationImage;
}
//二值图像开操作
Mat binaryOpen(Mat binaryImage, Mat se)
{
Mat openImage(binaryImage.rows,binaryImage.cols,CV_8UC1,Scalar(0));
openImage = binaryDilation(binaryErosion(binaryImage, se), se);
return openImage;
}
//二值图像闭操作
Mat binaryClose(Mat binaryImage, Mat se)
{
Mat closeImage(binaryImage.rows, binaryImage.cols, CV_8UC1, Scalar(0));
closeImage = binaryErosion(binaryDilation(binaryImage, se), se);
return closeImage;
}
//灰度图像开操作
Mat grayOpen(Mat grayImage, Mat se)
{
Mat openImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
openImage = grayDilation(grayErosion(grayImage, se), se);
return openImage;
}
//灰度图像闭操作
Mat grayClose(Mat grayImage, Mat se)
{
Mat closeImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
closeImage = grayErosion(grayDilation(grayImage, se), se);
return closeImage;
}
//二值图像边界提取
Mat binaryBorder(Mat binaryImage,Mat se)
{
Mat borderImage(binaryImage.rows, binaryImage.cols, CV_8UC1, Scalar(0));
Mat erosionImage(binaryImage.rows, binaryImage.cols, CV_8UC1, Scalar(0));
erosionImage = binaryErosion(binaryImage,se);
for (int i = 0; i < erosionImage.rows; i++)
{
for (int j = 0; j < erosionImage.cols; j++)
{
if (binaryImage.data[i*erosionImage.step+j]!=erosionImage.data[i*erosionImage.step+j])
{
borderImage.data[i*erosionImage.step + j] = 255;
}
}
}
return borderImage;
}
//灰度图像边界提取
Mat grayBorder(Mat grayImage, Mat se)
{
Mat borderImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
borderImage = grayImage - grayErosion(grayImage, se);
return borderImage;
}
//灰度图像梯度
Mat gradient(Mat grayImage, Mat se)
{
Mat gradient(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
gradient = grayDilation(grayImage, se) - grayErosion(grayImage, se);
return gradient;
}
//灰度图像的顶帽运算 T(f)=f-fob
Mat topHat(Mat grayImage,Mat se)
{
Mat topHatImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
topHatImage = grayImage - grayOpen(grayImage,se);
return topHatImage;
}
//灰度图像的底帽运算 B(f)=f⋅b-f
Mat bottomHat(Mat grayImage, Mat se)
{
Mat bottomHatImage(grayImage.rows, grayImage.cols, CV_8UC1, Scalar(0));
bottomHatImage = grayClose(grayImage, se)-grayImage;
return bottomHatImage;
}
int main()
{
Mat src = imread("E:\project\images\32.jpg");
Mat grayImage(src.rows, src.cols, CV_8UC1);
//转化为灰度图像
cvtColor(src, grayImage, CV_BGR2GRAY);
imshow("original Image",src);
imshow("gray Image", grayImage);
//转化为二值图像
Mat binaryImage = changeToBinaryImage(grayImage);
//创建模板 一般结构元素关于自身原点对称
//也可以自定义结构元素 下面的变量是3*3的矩阵 全部为0
Mat structureElement(3, 3, CV_8UC1, Scalar(0));
//调用二值图像腐蚀函数
//binaryErosion(binaryImage, structureElement);
imshow("binaryErosionImage", binaryErosion(binaryImage, structureElement));
//调用二值图像膨胀函数
//binaryDilation(binaryImage, structureElement);
imshow("binaryDilationImage", binaryDilation(binaryImage, structureElement));
//调用灰度图像腐蚀函数
//grayErosion(grayImage, structureElement);
imshow("grayErosionImage", grayErosion(grayImage, structureElement));
//调用灰度图像膨胀函数
//grayDilation(grayImage, structureElement);
imshow("grayDilationImage", grayDilation(grayImage, structureElement));
//调用二值图像开操作
imshow("binaryOpenImage",binaryOpen(binaryImage,structureElement));
//调用二值图像闭操作
imshow("binaryCloseImage", binaryClose(binaryImage, structureElement));
//调用灰度图像开操作
imshow("grayOpenImage", grayOpen(grayImage, structureElement));
//调用灰度图像闭操作
imshow("grayCloseImage", grayClose(grayImage, structureElement));
//二值图像边界提取
imshow("binaryBorderImage",binaryBorder(binaryImage,structureElement));
//灰度图像边界提取
imshow("grayBorderImage",grayBorder(grayImage,structureElement));
//调用灰度梯度函数
imshow("Gradient", gradient(binaryImage, structureElement));
//调用顶帽函数
imshow("topHat",topHat(grayImage,structureElement));
//调用底帽函数
imshow("bottomHat", bottomHat(grayImage, structureElement));
cvWaitKey(0);
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
评论记录:
回复评论: