首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

数字图像直方图处理涉及的数学知识介绍

  • 23-09-22 18:30
  • 4459
  • 10966
blog.csdn.net

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░

一、引言

在数字图像直方图处理学习时,老猿发现相关内容涉及数学定积分、概率统计等相关的知识,为此专门投入2个月时间将忘光了导数、微分、不定积分和定积分相关的知识彻底复习了一遍,相当于从头开始重新学习。在本文中将介绍直方图处理需要用到的数学知识要点,但涉及微积分相关知识请通过老猿的专栏《人工智能数学基础》进行学习,在此不重复介绍。

二、直方图简介

2.1、概念简介

直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。直方图是数值数据分布的精确图形表示。

直方图也可以被归一化以显示“相对”频率,它显示属于所有统计类别中的每个类别案例的比例,其总高度和等于1。

2.2、直方图的属性
  1. 形状(shape):分为是否对称(对称(Symmetry)/有偏(skewness))、是否平滑(有峰(Peakedness)/平滑 (modality)),下图左边图例为对称双峰直方图、中间图例为对称平滑分别、右边图例为右偏直方图(老猿注:左偏和右偏是根据均值和中位数的相对位置来命名左或右的,如平均值在中位数左边叫左偏)、单峰值分布
    在这里插入图片描述

  2. 集中趋势测量(center):直方图的中心可以有很多种定义方法
    √ 众数(Mode):统计分布中频率最大的变量的值、最频繁出现的值、最普通的值,是X轴上Y值最大的那一个group(即直方图上峰值最高的那一个柱子的值)
    √ 平均值或加权平均值(mean):将所有值加权相加后除以总数
    √ 中位数(median):即将所有样本排序后,所有样本的总数除以2,取中间的1个样本的值(总样本是奇数)或2个样本的值的平均数(总样本是偶数)

  3. 离散程度测量(spread):用于评估数据之间的分散程度
    √ 极差 range = 最大值 - 最小值
    √ 四分位差 (IQR: Inter-Quartile Range) = Q3(排序后数据第 75% 处的值) - Q1(排序后数据第 25% 处的值)
    √ 标准差 (standard range):方差的平方根 (standard deviation) ,每个观察值与均值之间的平均差异(on average, how far every point is from the mean of the points 每个点与均值之间距离的平均值)
    √ 方差 variance:标准差的平方
    √ 五数概括法 :最大值、最小值、Q1(First Quartile,第一四分位数,排序后数据第 25% 处的值)、Q2、Q3

  4. 异常值(outliers):又称为outliers,与数据集中的其他值离得非常远的数据点,看起来不正常的点,是明显偏离其余数据点的点。,如:
    在这里插入图片描述

三、直方图处理涉及的概率统计知识

3.1、概率密度函数和

在数学中,连续型随机变量的概率密度函数( probability density function,简称pdf)是一个描述这个随机变量的输出值在某个确定的取值点附近的可能性的函数。

两个相互映射的随机变量的概率密度函数之间存在关系,具体请参考《人工智能数学基础:两个存在映射关系的随机变量的概率密度函数关系研究》。

3.2、累积分布函数

累积分布函数(Cumulative Distribution Function,简称CDF),又叫分布函数,是随机变量的取值落在某个区域之内的概率,为概率密度函数在这个区域上的积分,能完整描述一个实随机变量的概率分布。即当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。

四、其他知识

直方图处理的原理涉及积分及导数知识,请参考《人工智能数学基础》关于导数和微积分部分的相关介绍。

五、小结

本文介绍了直方图处理相关的直方图知识、概率统计知识,要真正理解直方图处理还需要属性导数、微分和不定积分相关的概念以及计算公式。

如对文章内容存在疑问或需要相关资料,可在博客评论区留言,或关注:老猿Python 微信公号发消息咨询,可通过扫二维码加微信公众号。
在这里插入图片描述

更多图像处理请参考专栏《OpenCV-Python图形图像处理》及《图像处理基础知识》的介绍。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《 专栏:Python基础教程目录》从零开始学习Python。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 http://iyenn.com/rec/324324.html 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《http://iyenn.com/rec/324326.html moviepy音视频开发专栏文章目录》;
  3. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《http://iyenn.com/rec/324329.html OpenCV-Python初学者疑难问题集专栏目录 》
  4. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树预备知识Python简介333596 人正在系统学习中
老猿Python
微信公众号
专注Python相关语言、图像音视频处理、AI
注:本文转载自blog.csdn.net的LaoYuanPython的文章"https://blog.csdn.net/LaoYuanPython/article/details/119856695"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top