首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

人工智能数学基础---定积分2:定积分的性质

  • 23-09-22 15:01
  • 3775
  • 6669
blog.csdn.net

一、引言

在《人工智能数学基础—定积分1:定积分的概念以及近似计算》介绍了定积分的概念、几何意义、用定义来求定积分的案例以及使用矩形法、梯形法和抛物线法求定积分近似值的方法和案例等基础知识,根据上文的介绍,结合相关知识补充如下2条规则:
在这里插入图片描述
可以知道,交互积分区间的上下限,则定积分的绝对值不变但符号相反。

二、性质

2.1、性质1:定积分的线性运算

设α和β为常数,函数f(x)和g(x)在区间[a,b]上可积,则:
在这里插入图片描述
即定积分满足加法和数乘的线性运算规则,证明过程如下:
在这里插入图片描述
上述公式中λ为可积区间分成n分后的最大区间值。

实际上,该规则对于任意有限个可积函数的线性组合同样成立。

2.2、性质2:积分区间可加性

设函数f(x)在区间[a,b]上可积,设a
在这里插入图片描述
这个证明很简单,根据定积分的定义及极限即可以快速证明。

实际上,根据积分的补充规则,上述公式对于不满足a

2.3、性质3:恒等于1的函数积分

如函数f(x)在区间[a,b]上恒等于1,则:
在这里插入图片描述

2.4、性质4:积分保号性

如果函数f(x)在区间[a,b]上恒大于等于0,则:
在这里插入图片描述
根据积分定义即可证明。

推论1:如果在区间[a,b]上函数f(x)≤g(x)且二者可积,则:
在这里插入图片描述

推论2:如果在区间[a,b]上函数f(x)可积,则:
在这里插入图片描述

2.5、性质5:有界函数的积分

设M和m是函数f(x)在区间[a,b]上的最大值和最小值,且函数f(x)可积,则:
在这里插入图片描述
根据这个性质,可以根据被积函数的最大值和最小值,估算积分值的范围。
证明:
在这里插入图片描述

2.6、性质6:定积分中值定理

2.6.1、定理

如果函数f(x)在区间[a,b]上连续,那么在区间[a,b]上至少存在一点ξ,使得:
在这里插入图片描述
这个公式叫做积分中值公式。其中:
在这里插入图片描述
称为函数f(x)在区间[a,b]上的平均值。

证明:
由《人工智能数学基础6:极限、极限运算、ε-δ语言、ε-N语言、级数和函数连续性》介绍可知,闭区间上的连续函数在该区间上一定有界,存在最大值M、最小值m,且有介值性。

因此根据性质5有:
在这里插入图片描述
这表明,而:
在这里插入图片描述
一定是一个确定的值,按照连续函数介值性,则在区间[a,b]上至少存在一点ε,使得:
在这里插入图片描述
两边乘以b-a即可得证。

说明:无论a>b还是a

2.6.2、几何解释

积分中值公式有如下的几何解释:在区间[a,b]上至少存在一点ε,使得以区间[a,b]为底边、以曲线y=f(x)为曲边的曲边梯形的面积等于同一底边而高为f(ε)的一个矩形的面积(图5-5)。

在这里插入图片描述

三、小结

本文介绍了定积分的性质,包括线性组合运算、保号性、区间可加性、积分中值定理等。

说明:

本文内容是老猿学习同济版高数的总结,有需要原教材电子版以及OpenCV、Python基础知识、、图像处理原理介绍相关电子资料,或对文章内有有疑问咨询的,请扫博客首页左边二维码加微信公号,根据加微信公号后的自动回复操作。

更多人工智能数学基础请参考专栏《人工智能数学基础》。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 http://iyenn.com/rec/324324.html 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《http://iyenn.com/rec/324326.html moviepy音视频开发专栏文章目录》;
  3. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《http://iyenn.com/rec/324329.html OpenCV-Python初学者疑难问题集专栏目录 》
  4. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树人工智能机器学习工具包Scikit-learn333560 人正在系统学习中
老猿Python
微信公众号
专注Python相关语言、图像音视频处理、AI
注:本文转载自blog.csdn.net的LaoYuanPython的文章"https://blog.csdn.net/LaoYuanPython/article/details/119521970"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2024 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top