首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

人工智能数学基础:求导神器--罗必塔法则

  • 23-09-22 15:01
  • 2620
  • 5882
blog.csdn.net

在这里插入图片描述

一、引言

如果两个函数f(x)、F(x)在x->a或x->∞时,其值都趋于0或无穷大,,那么这两个函数的商为0/0或∞/∞,那么f(x)/F(x)在x->a或x->∞时的极限可能存在、也可能不存在,通常把这种极限叫做未定式,并分别简记为:
在这里插入图片描述

罗必塔(L’Hospital)法则,也称为洛必达法则,就是针对这种未定式极限中某些有极限值的部分未定式来推理其极限的简单重要方法。

二、罗必塔法则

2.1、定理1

1、定理

设:

  1. 当x->a时,函数f(x)和F(x)都趋于0;
  2. 在点a的某去心邻域内,f’(x)和F’(x)都存在,且F’(x)不等于0;
  3. x->a时,lim(f’(x)/F’(x))存在(或为无穷大)。

则:
在这里插入图片描述

2、证明思路

由于是求lim(f(x)/F(x))的极限,当x->a时,函数f(x)和F(x)都趋于0,且当x->a时,函数f(x)和F(x)都趋于0,因此不妨假设f(a)=F(a)=0。因此两个函数在点a的邻域内是连续的,即:

函数f(x)和F(x)在[x,a]内连续,由条件2指定二者在(x,a)内可导,且F’(x)不等于0,因此满足柯西中值定理的要求,则函数f(x)和F(x)在(x,a)内,下列等式成立:

在这里插入图片描述
当x->a时,ε->a,对上式两端求极限,即可得到证明。

3、意义

洛必达法则,对于未定式求极限时,如果在x->a时,当lim(f’(x)/F’(x))存在或趋于无穷大时,lim(f(x)/F(x))也存在或趋于无穷大,且其极限等于lim(f’(x)/F’(x))。

如果当lim(f’(x)/F’(x))也是未定式,且(f’(x)和F’(x)满足定理的条件时,那么可以继续使用洛必达法则,通过lim(f"(x)/F"(x))求得lim(f’(x)/F’(x)),再求得lim(f(x)/F(x))。

通过以上方式,可以实现极限运算求解的降维操作,从而化繁为简实现快速求取极限。

2.2、定理2

定理1的x->a时改为x->∞,也有相应的罗必塔法则:
设:

  1. 当x->∞时,函数f(x)和F(x)都趋于0;
  2. 当|x|>N时,f’(x)和F’(x)都存在,且F’(x)不等于0;
  3. x->∞时,lim(f’(x)/F’(x))存在(或为无穷大)。

则:
在这里插入图片描述

注意:
上述定理1和定理2是针对0/0型的未定式,实际上无论是x->a还是x->∞,针对∞/∞的未定式也同样可以利用罗必塔法则。

三、案例

洛必达法则是求未定式的一种有效方法,但最好能与其他求极限的方法结合使用。例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简捷。
在这里插入图片描述

四、小结

本文介绍了罗必塔法则的内容,罗必塔法则给出的是求未定式的一方法,通过对满足条件的两个函数的商求导后的结果求极限,作为未定式的极限。

当定理条件满足时,所求的极限当然存在(或为∞),但当定理条件不满足时,所求极限却不一定不存在,这就是说当两个函数的导数的商的极限不存在时(等于无穷大的情况除外),未定式的极限也可能存在。

说明:

本文内容是老猿学习同济版高数的总结,有需要原教材电子版以及OpenCV、Python基础知识、、图像处理原理介绍相关电子资料,或对文章内有有疑问咨询的,请扫博客首页左边二维码加微信公号,根据加微信公号后的自动回复操作。

更多人工智能数学基础请参考专栏《人工智能数学基础》。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 http://iyenn.com/rec/324324.html 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《http://iyenn.com/rec/324326.html moviepy音视频开发专栏文章目录》;
  3. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《http://iyenn.com/rec/324329.html OpenCV-Python初学者疑难问题集专栏目录 》
  4. 付费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《http://iyenn.com/index/link?url=https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树人工智能机器学习工具包Scikit-learn333560 人正在系统学习中
老猿Python
微信公众号
专注Python相关语言、图像音视频处理、AI
注:本文转载自blog.csdn.net的LaoYuanPython的文章"https://blog.csdn.net/LaoYuanPython/article/details/118651646"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top