首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【NNDL 作业】优化算法比较 增加 RMSprop、Nesterov

  • 24-03-09 02:01
  • 2153
  • 12440
blog.csdn.net

NNDL 作业11:优化算法比较_HBU_David的博客-CSDN博客

作业第7题。

写完程序后,调整不同的学习率,观察现象。

optimizers["SGD"] = SGD(lr=0.9)
optimizers["Momentum"] = Momentum(lr=0.3)
optimizers["Nesterov"] = Nesterov(lr=0.3)
optimizers["AdaGrad"] = AdaGrad(lr=0.6)
optimizers["RMSprop"] = RMSprop(lr=0.6)
optimizers["Adam"] = Adam(lr=0.6)

加深对算法、学习率、梯度的理解,更好地掌握相关知识。

  源代码

  1. # coding: utf-8
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from collections import OrderedDict
  5. class SGD:
  6. """随机梯度下降法(Stochastic Gradient Descent)"""
  7. def __init__(self, lr=0.01):
  8. self.lr = lr
  9. def update(self, params, grads):
  10. for key in params.keys():
  11. params[key] -= self.lr * grads[key]
  12. class Momentum:
  13. """Momentum SGD"""
  14. def __init__(self, lr=0.01, momentum=0.9):
  15. self.lr = lr
  16. self.momentum = momentum
  17. self.v = None
  18. def update(self, params, grads):
  19. if self.v is None:
  20. self.v = {}
  21. for key, val in params.items():
  22. self.v[key] = np.zeros_like(val)
  23. for key in params.keys():
  24. self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
  25. params[key] += self.v[key]
  26. class Nesterov:
  27. """Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""
  28. def __init__(self, lr=0.01, momentum=0.9):
  29. self.lr = lr
  30. self.momentum = momentum
  31. self.v = None
  32. def update(self, params, grads):
  33. if self.v is None:
  34. self.v = {}
  35. for key, val in params.items():
  36. self.v[key] = np.zeros_like(val)
  37. for key in params.keys():
  38. self.v[key] *= self.momentum
  39. self.v[key] -= self.lr * grads[key]
  40. params[key] += self.momentum * self.momentum * self.v[key]
  41. params[key] -= (1 + self.momentum) * self.lr * grads[key]
  42. class AdaGrad:
  43. """AdaGrad"""
  44. def __init__(self, lr=0.01):
  45. self.lr = lr
  46. self.h = None
  47. def update(self, params, grads):
  48. if self.h is None:
  49. self.h = {}
  50. for key, val in params.items():
  51. self.h[key] = np.zeros_like(val)
  52. for key in params.keys():
  53. self.h[key] += grads[key] * grads[key]
  54. params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
  55. class RMSprop:
  56. """RMSprop"""
  57. def __init__(self, lr=0.01, decay_rate=0.99):
  58. self.lr = lr
  59. self.decay_rate = decay_rate
  60. self.h = None
  61. def update(self, params, grads):
  62. if self.h is None:
  63. self.h = {}
  64. for key, val in params.items():
  65. self.h[key] = np.zeros_like(val)
  66. for key in params.keys():
  67. self.h[key] *= self.decay_rate
  68. self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
  69. params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
  70. class Adam:
  71. """Adam (http://arxiv.org/abs/1412.6980v8)"""
  72. def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
  73. self.lr = lr
  74. self.beta1 = beta1
  75. self.beta2 = beta2
  76. self.iter = 0
  77. self.m = None
  78. self.v = None
  79. def update(self, params, grads):
  80. if self.m is None:
  81. self.m, self.v = {}, {}
  82. for key, val in params.items():
  83. self.m[key] = np.zeros_like(val)
  84. self.v[key] = np.zeros_like(val)
  85. self.iter += 1
  86. lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)
  87. for key in params.keys():
  88. self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
  89. self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])
  90. params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
  91. def f(x, y):
  92. return x ** 2 / 20.0 + y ** 2
  93. def df(x, y):
  94. return x / 10.0, 2.0 * y
  95. init_pos = (-7.0, 2.0)
  96. params = {}
  97. params['x'], params['y'] = init_pos[0], init_pos[1]
  98. grads = {}
  99. grads['x'], grads['y'] = 0, 0
  100. learningrate = [0.9,0.3,0.3,0.6,0.6,0.6,0.6]
  101. optimizers = OrderedDict()
  102. optimizers["SGD"] = SGD(lr=learningrate[0])
  103. optimizers["Momentum"] = Momentum(lr=learningrate[1])
  104. optimizers["Nesterov"] = Nesterov(lr=learningrate[2])
  105. optimizers["AdaGrad"] = AdaGrad(lr=learningrate[3])
  106. optimizers["RMSprop"] = RMSprop(lr=learningrate[4])
  107. optimizers["Adam"] = Adam(lr=learningrate[5])
  108. idx = 1
  109. id_lr = 0
  110. for key in optimizers:
  111. optimizer = optimizers[key]
  112. lr = learningrate[id_lr]
  113. id_lr = id_lr + 1
  114. x_history = []
  115. y_history = []
  116. params['x'], params['y'] = init_pos[0], init_pos[1]
  117. for i in range(30):
  118. x_history.append(params['x'])
  119. y_history.append(params['y'])
  120. grads['x'], grads['y'] = df(params['x'], params['y'])
  121. optimizer.update(params, grads)
  122. x = np.arange(-10, 10, 0.01)
  123. y = np.arange(-5, 5, 0.01)
  124. X, Y = np.meshgrid(x, y)
  125. Z = f(X, Y)
  126. # for simple contour line
  127. mask = Z > 7
  128. Z[mask] = 0
  129. # plot
  130. plt.subplot(2, 3, idx)
  131. idx += 1
  132. plt.plot(x_history, y_history, 'o-', color="r")
  133. # plt.contour(X, Y, Z) # 绘制等高线
  134. plt.contour(X, Y, Z, cmap='gray') # 颜色填充
  135. plt.ylim(-10, 10)
  136. plt.xlim(-10, 10)
  137. plt.plot(0, 0, '+')
  138. # plt.axis('off')
  139. # plt.title(key+'\nlr='+str(lr), fontstyle='italic')
  140. plt.text(0, 10, key+'\nlr='+str(lr), fontsize=20, color="b",
  141. verticalalignment ='top', horizontalalignment ='center',fontstyle='italic')
  142. plt.xlabel("x")
  143. plt.ylabel("y")
  144. plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
  145. plt.show()

注:本文转载自blog.csdn.net的HBU_David的文章"https://blog.csdn.net/qq_38975453/article/details/128206475"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top