首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

poj2377 - Bad Cowtractors

  • 24-03-05 07:01
  • 3146
  • 7066
blog.csdn.net

                               想看更多的解题报告:http://iyenn.com/rec/1824570.html
                                  转载请注明出处:http://blog.csdn.net/wangjian8006

题目大意:谷仓之间有一些路径长度,然后要在这些谷仓之间建立一些互联网,花费的成本与长度成正比,,并且要使这些边连起来看的像一课“树”,然后使成本最大
解题思路:最大生成树
用kruskal在最小生成树的基础上,将排序从大到小排序,这样就是一个最大生成树了

  1. /*
  2. Memory 472K
  3. Time 63MS
  4. */
  5. #include
  6. #include
  7. using namespace std;
  8. #define MAXV 1001
  9. #define MAXM 20010
  10. class CEdge{
  11. public:
  12. int m_start,m_end,m_value;
  13. };
  14. class CMaxSpanTree{
  15. private:
  16. CEdge *m_edge; //结构体保存边的信息
  17. int *m_nParentSet; //保存并查集的父亲数组
  18. int m_nVerCount; //点的个数
  19. int m_nEdgeCount; //边的个数
  20. bool m_bFlag; //判断是否是连通图
  21. int m_nAns; //最大生成树的边和
  22. bool Union(int x,int y); //并查集的合并函数
  23. int find(int x); //并查集寻找根节点函数
  24. public:
  25. CMaxSpanTree(int VerCount);
  26. ~CMaxSpanTree();
  27. void AddEdge(int s,int t,int w); //增加一条边
  28. void Run(); //运行,kruskal算法计算最大生成树
  29. int GetAns(); //得到答案
  30. };
  31. bool cmp(CEdge a,CEdge b){ //这边用kruskal算法时使排序按照边值从大到小排序
  32. return a.m_value>b.m_value;
  33. }
  34. CMaxSpanTree::CMaxSpanTree(int nVerCount){
  35. m_edge = new CEdge[MAXM];
  36. m_nParentSet = new int[MAXV];
  37. m_nEdgeCount = 0;
  38. m_nVerCount = nVerCount;
  39. m_nAns = 0;
  40. m_bFlag = false; //初始设为不连通
  41. for(int i = 0;i <= nVerCount;i++){ //并查集父亲数组初值
  42. m_nParentSet[i] = i;
  43. }
  44. }
  45. CMaxSpanTree::~CMaxSpanTree(){
  46. delete []m_edge;
  47. delete []m_nParentSet;
  48. }
  49. void CMaxSpanTree::AddEdge(int s,int t,int w){
  50. m_edge[m_nEdgeCount].m_start = s;
  51. m_edge[m_nEdgeCount].m_end = t;
  52. m_edge[m_nEdgeCount].m_value = w;
  53. m_nEdgeCount++;
  54. }
  55. int CMaxSpanTree::find(int x){
  56. if(x == m_nParentSet[x])
  57. return x;
  58. int rt = find(m_nParentSet[x]);
  59. m_nParentSet[x] = rt;
  60. return rt;
  61. }
  62. bool CMaxSpanTree::Union(int x,int y){
  63. int fx = find(x);
  64. int fy = find(y);
  65. if (fx == fy){
  66. return 0;
  67. }
  68. m_nParentSet[fx] = fy;
  69. return 1;
  70. }
  71. void CMaxSpanTree::Run(){
  72. sort(m_edge,m_edge+m_nEdgeCount,cmp);
  73. int nCnt = 0 ,i;
  74. for(i = 0;i < m_nEdgeCount;i++){
  75. if(Union(m_edge[i].m_start,m_edge[i].m_end)){
  76. m_nAns += m_edge[i].m_value;
  77. nCnt++;
  78. if(nCnt == m_nVerCount - 1){
  79. m_bFlag = true;
  80. return;
  81. }
  82. }
  83. }
  84. }
  85. int CMaxSpanTree::GetAns(){
  86. return m_bFlag?m_nAns:-1;
  87. }
  88. int main(){
  89. int n,m;
  90. int a,b,c;
  91. while(~scanf("%d%d",&n,&m)){
  92. CMaxSpanTree tree(n);
  93. while(m--){
  94. scanf("%d%d%d",&a,&b,&c);
  95. tree.AddEdge(a,b,c);
  96. }
  97. tree.Run();
  98. cout<GetAns()<
  99. }
  100. return 0;
  101. }


 

注:本文转载自blog.csdn.net的wangjian8006的文章"http://blog.csdn.net/wangjian8006/article/details/8865547"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top