首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

2018热点总结:BERT最热,GANs最活跃,每20分钟就有一篇论文...

  • 24-03-05 00:01
  • 2453
  • 9425
blog.csdn.net

640?wx_fmt=jpeg

 

作者 | Ross Taylor

译者 | linstancy

整理 | Jane

出品 | AI科技大本营

     

【导读】本文的作者 Ross Taylor 和 Robert Stojnic 在今年一起启动了一个名为“Paper with Code”的项目,将 AI 领域的一些研究论文和论文开源代码结合展示,方便大家学习与研究。在推进这个项目的同时,通过分析网站的数据他们也有一些意外和有趣的收获,用更综合、全面的视野总结了下半年的发展现状与热点,哪些正在成为流行趋势、哪些被广泛使用。

 

在这篇文章中,作者为大家总结了 2018 年下半年机器学习领域被密切关注的成果,快来看看,这些你是不是都知道呢?

 

最流行的模型

BERT, vid2vid 和 graph_nets

 

10月,Google AI 团队提出了一种深度双向 Transformer 模型 (BERT),并发表了相关的论文。该模型在 11 个NLP 任务上取得了目前为止最佳的性能,Stanford Question Answering (SQuAD) 数据集也引起了学术界的强烈关注。随后,Google AI 进一步开源了项目代码,并在当月获得了最多 Stars 数量,可见其热门程度。

 

论文链接:https://arxiv.org/abs/1810.04805

GitHub 链接:https://github.com/google-research/bert

     

Nvidia 的 video-to-video synthesis 研究同样是下半年一大热点。该研究提出了一种新颖的生成模型 (GAN) 并在视频合成任务中取得惊人的效果。众所周知,GAN 是过去几年里最受欢迎的深度学习模型之一,该研究团队利用一种新颖的顺序生成器架构,以及一些前景和背景先验 (foreground-and-background priors) 等设计特征,解决了当前视频合成研究中时间不连贯的问题,进而提高了最终的性能。同样地,该项目代码也被 Nvidia 团队开源,并成为今年下半年第二大最受欢迎的项目。

 

论文链接:https://arxiv.org/abs/1808.06601

GitHub 链接:https://github.com/NVIDIA/vid2vid

     640?wx_fmt=jpeg

 

同样值得关注的是,Google DeepMind 团队关于图网络 (graph_nets) 的最新研究。该研究得到广泛关注的原因是,因为它为解决结构化数据提供了一种新的方向。该开源项目是 2018 下半年排名第三位的受欢迎项目。

 

论文链接:https://arxiv.org/abs/1806.01261v3

GitHub 链接:https://github.com/deepmind/graph_nets

 

640?wx_fmt=png

 

最受欢迎的项目

DeOldify、BERT 和 Fast R-CNNs

     

下面来介绍下半年最受欢迎的三个开源项目。

 

首先是 DeOldify。这是一项使用生成对抗网络 (GAN) 来修复黑白旧照片并为其重新上色的研究,在深度学习领域引发了极大的兴趣和关注。该项目的作者是 Jason Antic,他借鉴了几种 GAN 模型的实现,包括 self-attention GANs (SA-GANs)、progressively growing GANs (PG-GANs),来构建自己的模型,并采用两种时间跨度的原则,最终得到了有意思的结果。

 

GitHub 链接:

https://github.com/jantic/DeOldify

 

640?wx_fmt=jpeg

 

其次是 BERT 的 pytorch 实现,作者是 Junseong Kim。该项目的代码基于 The Annotated Transformer,代码风格简单易懂。

 

GitHub 链接:

https://github.com/codertimo/BERT-pytorch

    

最后一个项目是 Mask R-CNN 的 Keras/TensorFlow 实现,作者 Waleed Abdulla,这是今年下半年第三个热门 GitHub 项目。在结构上,Mask R-CNN 基于特征金字塔网络 (FPN) 和 ResNet101 为模型骨干,它可用于许多诸如 3D 建筑物重建,自动驾驶中的目标检测,检测地图中的建筑物类型等应用。

 

GitHub 链接:

https://github.com/matterport/Mask_RCNN

 

640?wx_fmt=png

 

最活跃的领域

NLP 和 GANs

 

通过查看 GitHub 上 Top50 的开源实现,我们会发现当前最热门、最活跃的研究领域是自然语言处理 (NLP) 和生成对抗模型 (GANs)。在 GitHub 上,GANs 领域最受欢迎的开源项目有 vid2vid,DeOldify,CycleGAN 以及 faceswaps,而最热门的 NLP 开源项目包括 BERT,HanLP,jieba,AllenNLP 以及 fastText。

 

640?wx_fmt=png

 

每7篇新论文中,只有一篇论文附有代码实现

 

希望研究者在发表论文的同时可以开源自己的代码实现。在过去 5 年的时间里,我们处理了60000 多篇机器学习领域的论文,在这些论文中,只有 12% 的论文开源了它们的代码,而过去 6 个月新发表的论文中,大约只有 15% (即每7篇新论文中只有1篇)附有代码实现。这些数字都告诉我们还有更多的工作要做,但是一切也正朝着正确的方向发展!

 

每 20 分钟就会出现一篇机器学习论文

 

从 7 月到现在,机器学习领域论文发表数量的增长率一直维持在每月 3.5% 左右,每年的增长率达到了 50%。这意味着,每月大约有 2200 篇新论文发表,按照这个趋势,预计明年将有近  30000 篇新论文发表。

 

为了更好描述这是怎样的一个趋势,我们绘制了曲线图与摩尔定律的趋势图进行比较。

640?wx_fmt=png

 

最热门的两大深度学习框架

Tensorflow 和 PyTorch

 

以往每年大部分论文的代码都是基于 Tensorflow 框架实现的,但是,今年 PyTorch 的火热程度无法让人忽视,PyTorch 社区的活跃度非常高。其他的框架,诸如 MXNet,Torch 和 Caffe2 在整个深度学习社区的活跃度和使用率相对就有些低了。 Tensorflow 和 PyTorch 这两大框架都发生了很大的变化,TensorFlow 正朝着 eager execution 的方向发展,并集成了新的 Keras API,而 PyTorch 的改进旨在使用者能够更轻松地构建自己的深度学习模型。     

640?wx_fmt=png

 

展望

 

整个领域都开始强调论文的可复现性,虽然目前的数字显示,并不是都能做到,甚至我们还有一段路要走,但也正是如此,帮助大家明确了今后的工作的要求与方向。也希望出了研究人员外,有更多的人加入到开源社区中来。

 

此外,除了 Google 和 Facebook 这样的大型巨头公司外,独立的 ML 社区 (indie ML community) 也将有助于推动论文复现、代码开源等工作。如果,研究团队和开发社区能更加紧密的联系与合作,相信会产生更多有助于实际应用的机器学习工具,进而让整个领域更加发挥更大的潜力,全速前进。

 

原文链接:

https://medium.com/atlas-ml/state-of-deep-learning-h2-2018-review-cc3e490f1679

 

(*本文为AI科技大本营翻译稿件,转载请联系微信1092722531)

 

公开课预告

◆

文字识别

◆

OCR(文字识别)技术是目前常用的一种AI能力。但一般OCR的识别结果是一种按行输出的半结构化输出。本课程从百度自定义模板文字识别展开,从理论到案例,详细介绍OCR结构化的相关技术,并理清OCR和结构化之间的关系和适用场景。

入群福利:添加小助手微信cadnai2,回复:OCR,加入课程交流群。课程QA,PPT共享。

640?wx_fmt=jpeg

640?wx_fmt=png

 

推荐阅读

  • 20k~50k,“寒冬季”一线城市技术人才依旧紧缺,千里马,赶紧来投!

  • 20张图表达程序员的心酸

  • Python 爬取爱奇艺腾讯视频 250,000 条数据分析为什么李诞不值得了?

  • 这位 50 岁的海归程序员,当着老板还在天天改 Bug

 

点击“阅读原文”,打开APP 阅读更顺畅。

注:本文转载自blog.csdn.net的AI科技大本营的文章"https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/85059041"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top