313. 超级丑数
超级丑数 是一个正整数,并满足其所有质因数都出现在质数数组 primes 中。
给你一个整数 n 和一个整数数组 primes ,返回第 n 个 超级丑数 。
题目数据保证第 n 个 超级丑数 在 32-bit 带符号整数范围内。
示例 1:
输入:n = 12, primes = [2,7,13,19]
输出:32
解释:给定长度为 4 的质数数组 primes = [2,7,13,19],前 12 个超级丑数序列为:[1,2,4,7,8,13,14,16,19,26,28,32] 。
示例 2:
输入:n = 1, primes = [2,3,5]
输出:1
解释:1 不含质因数,因此它的所有质因数都在质数数组 primes = [2,3,5] 中。
提示:
1 <= n <= 106
1 <= primes.length <= 100
2 <= primes[i] <= 1000
题目数据 保证 primes[i] 是一个质数
primes 中的所有值都 互不相同 ,且按 递增顺序 排列
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/super-ugly-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
代码:
from typing import List
import numpy as np
import heapq
class Solution_ac__:
def nthSuperUglyNumber_超时(self, n: int, primes: List[int]) -> int:
dp = [None for _ in range(n+1)] # 丑数序列
dp[1] = 1 # 第一个是1
len_primes = len(primes)
nums = [None for _ in range(len_primes)]
pointers = [1 for _ in range(len_primes)] # 指向该做乘积的那个丑数
for i in range(2,n+1):
min_newUgly = sys.maxsize
for j in range(len_primes):
nums[j] = dp[pointers[j]]*primes[j]
min_newUgly = min(min_newUgly,nums[j])
dp[i] = min_newUgly
for j in range(len_primes):
if min_newUgly==nums[j]:
pointers[j]+=1
return dp[n]
class Solution:
def __init__(self):
pass
def nthSuperUglyNumber_ac(self, n: int, primes: List[int]) -> int:
q = [(a, i, 0) for i, a in enumerate(primes)]
ans = [1, ] + [0, ] * (n - 1)
j = 1
while j < n:
val, i, idx = q[0]
if val != ans[j - 1]:
ans[j] = val
j += 1
heapq.heapreplace(q, (ans[idx + 1] * primes[i], i, idx + 1))
return ans[n - 1]
def nthSuperUglyNumber_动态规划2_超时(self, n: int, primes: List[int]) -> int:
dp = [0] * (n + 1)
dp[1] = 1
m = len(primes)
pointers = [1] * m
for i in range(2, n + 1):
min_num = min(dp[pointers[j]] * primes[j] for j in range(m))
dp[i] = min_num
for j in range(m):
if dp[pointers[j]] * primes[j] == min_num:
pointers[j] += 1
return dp[n]
def nthSuperUglyNumber_小顶堆超时(self, n: int, primes: List[int]) -> int:
seen = {1}
heap = [1]
for i in range(n):
ugly = heapq.heappop(heap)
for prime in primes:
nxt = ugly * prime
if nxt not in seen:
seen.add(nxt)
heapq.heappush(heap, nxt)
return ugly
# 动态规划_超时
def nthSuperUglyNumber_动态规划_超时(self, n: int, primes: List[int]) -> int:
dp = [None for _ in range(n+1)] # 丑数序列
dp[1] = 1 # 第一个是1
len_primes = len(primes)
nums = [None for _ in range(len_primes)]
pointers = [1 for _ in range(len_primes)] # 指向该做乘积的那个丑数
for i in range(2,n+1):
min_newUgly = sys.maxsize
for j in range(len_primes):
nums[j] = dp[pointers[j]]*primes[j]
min_newUgly = min(min_newUgly,nums[j])
dp[i] = min_newUgly
for j in range(len_primes):
if min_newUgly==nums[j]:
pointers[j]+=1
return dp[n]
class Solution_暴力超时:
def __init__(self):
self.prime_in_set=None
self.prime_not_in_set=[]
self.is_prime=[2]
self.is_super_ugly_number=[1,] # 加速
self.now_max_prime=1
self.ISDEBUG=False
def deepDivision(self,father,divisor):
"""返回 father不断除以divisor 直到不能整除"""
while father%divisor==0:
father/=divisor
return father
def isPrime(self,number):
"""判断输入是否为素数"""
if number in self.is_prime:return True
if number<2:return False
for x in range(2, int(np.sqrt(number)) + 1):
if number%x==0:return False
return True
def isSuperUglyNumber(self,number):
"""判断 number 是否为超级丑数 """
number_division=number
# # 如果因数全是超级丑数,那么他肯定也是超级丑数
# for super_ugly in self.is_super_ugly_number:
# if 1!=super_ugly and number_division%super_ugly==0:
# number_division=self.deepDivision(number_division,super_ugly)
# 如果质因数都在现有 is_prime 里,只要分析是否都在 prime_in_set 中即可
for prime in self.is_prime:
if number_division%prime==0:
if prime in self.prime_in_set:
number_division=self.deepDivision(number_division,prime)
else:
return False
if number_division==1:
self.is_super_ugly_number.append(number)
if self.ISDEBUG:print(f'add {number}, now {self.is_super_ugly_number}')
return True
# # 如果因数全是超级丑数,那么他肯定也是超级丑数
# for primeinset in self.prime_in_set:
# if 1!=primeinset and number_division%primeinset==0:
# number_division=self.deepDivision(number_division,primeinset)
# if number_division==1:
# self.is_super_ugly_number.append(number)
# if self.ISDEBUG:print(f'add {number}, now {self.is_super_ugly_number}')
# return True
# number_division!=1 表示还有质因数不在 is_prime 中,可能有更大的质因数,也可能已经是质数了
# 已经是质数了
if self.isPrime(number_division):
# self.is_prime.append(number_division)
if number_division in self.prime_in_set:return True
else:return False
# 有更大的质因数
num = max(self.is_prime)
while num<number_division:
num+=1
if number_division%num==0 and self.isPrime(num):
self.is_prime.append(num)
if num not in self.prime_in_set:
return False
number_division = self.deepDivision(number_division,num)
else:
self.is_super_ugly_number.append(number)
if self.ISDEBUG:print(f'add {number}, now {self.is_super_ugly_number}')
return True
def nthSuperUglyNumber(self, n: int, primes: List[int]) -> int:
self.prime_in_set = primes
result = 1
cnt = 1 # 第一个永远是1,所以至少有一个
number = 1 # 从2开始分析
while cnt<n:
number += 1
if self.isSuperUglyNumber(number):
result = number
cnt+=1
return result
import sys
def test(n=12,primes=[2,7,13,19]):
s = Solution()
return s.nthSuperUglyNumber(n,primes)
# return s.nthSuperUglyNumber2(n,primes)
if __name__ == '__main__':
import time
data_test = [
# [12,[2,7,13,19]], # [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]
# [500,[37, 43, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 113, 127, 131, 157, 163, 167, 173, 179, 191, 193, 197, 199, 211, 229, 233, 239, 251, 257]],
# [800,[37, 43, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 113, 127, 131, 157, 163, 167, 173, 179, 191, 193, 197, 199, 211, 229, 233, 239, 251, 257]],
# [3000,[7, 19, 29, 37, 41, 47, 53, 59, 61, 79, 83, 89, 101, 103, 109, 127, 131, 137, 139, 157, 167, 179, 181, 199, 211, 229, 233, 239, 241, 251]],
# [3000,[7, 19, 29, 37, 41, 47, 53, 59, 61, 79, 83, 89, 101, 103, 109, 127, 131, 137, 139, 157, 167, 179, 181, 199, 211, 229, 233, 239, 241, 251]],
[3000,[7, 19, 29, 37, 41, 47, 53, 59, 61, 79, 83, 89, 101, 103, 109, 127, 131, 137, 139, 157, 167, 179, 181, 199, 211, 229, 233, 239, 241, 251]],
[100000,[7, 19, 29, 37, 41, 47, 53, 59, 61, 79, 83, 89, 101, 103, 109, 127, 131, 137, 139, 157, 167, 179, 181, 199, 211, 229, 233, 239, 241, 251]],
[1000000,[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541]],
]
for n,p in data_test:
t0 = time.time()
print('result:',test(n,p),f'{time.time()-t0}s')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
备注:
GitHub:https://github.com/monijuan/leetcode_python
CSDN汇总:模拟卷Leetcode 题解汇总_卷子的博客-CSDN博客
可以加QQ群交流:1092754609
leetcode_python.utils详见汇总页说明
先刷的题,之后用脚本生成的blog,如果有错请留言,我看到了会修改的!谢谢!
评论记录:
回复评论: