本文涉及的基础知识点
题目
Winston 构造了一个如上所示的函数 func 。他有一个整数数组 arr 和一个整数 target ,他想找到让 |func(arr, l, r) - target| 最小的 l 和 r 。
请你返回 |func(arr, l, r) - target| 的最小值。
请注意, func 的输入参数 l 和 r 需要满足 0 <= l, r < arr.length 。
示例 1:
输入:arr = [9,12,3,7,15], target = 5
输出:2
解释:所有可能的 [l,r] 数对包括 [[0,0],[1,1],[2,2],[3,3],[4,4],[0,1],[1,2],[2,3],[3,4],[0,2],[1,3],[2,4],[0,3],[1,4],[0,4]], Winston 得到的相应结果为 [9,12,3,7,15,8,0,3,7,0,0,3,0,0,0] 。最接近 5 的值是 7 和 3,所以最小差值为 2 。
示例 2:
输入:arr = [1000000,1000000,1000000], target = 1
输出:999999
解释:Winston 输入函数的所有可能 [l,r] 数对得到的函数值都为 1000000 ,所以最小差值为 999999 。
示例 3:
输入:arr = [1,2,4,8,16], target = 0
输出:0
参数范围:
1 <= arr.length <= 10^5
1 <= arr[i] <= 10^6
0 <= target <= 10^7
方法一超时
按二进制的位讨论
对任意一个二进制位,从左到右,出现第一个0之前是1,之后是0。我们用vIndexs记录各二进制位0的索引。
两层循环,第一层循环枚举起始l,第二层循环枚举各位。只需要考虑有二进位第一个变成0的位。
时间复杂度
O(nlogmax(logn+logm)) 约O(3e7) 处于超时边缘。
核心代码
class Solution {
public:
int closestToTarget(vector<int>& arr, int target) {
m_c = arr.size();
const int iBitNum = 21;
vector<vector<int>> vIndexs(iBitNum);
for (int i = 0; i < m_c; i++)
{
for (int j = 0; j < iBitNum; j++)
{
if (arr[i] & (1 << j))
{
continue;
}
vIndexs[j].emplace_back(i);
}
}
int iRet = INT_MAX;
for (int l = 0; l < m_c; l++)
{
set<int> setIndexs ;
for (int j = 0; j < iBitNum; j++)
{
auto it = std::lower_bound(vIndexs[j].begin(), vIndexs[j].end(), l);
if (vIndexs[j].end() != it)
{
setIndexs.emplace(*it);
}
}
vector<int> vValue = { arr[l] };
for (const auto& index : setIndexs)
{
vValue.emplace_back(vValue.back() & arr[index]);
}
for (const auto& value : vValue)
{
iRet = min(iRet, abs(value - target));
}
}
return iRet;
}
int m_c;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
测试用例
template <class T>
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
template <class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}
int main()
{
vector<int> arr;
int target;
int res;
{
Solution slu;
arr = { 9, 12, 3, 7, 15 };
int target = 5;
res = slu.closestToTarget(arr, target);
Assert(2, res);
}
{
Solution slu;
arr = { 1000000,1000000,1000000 };
int target =1;
res = slu.closestToTarget(arr, target);
Assert(999999, res);
}
{
Solution slu;
arr = { 1,2,4,8,16 };
int target = 0;
res = slu.closestToTarget(arr, target);
Assert(0, res);
}
//CConsole::Out(res);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
方法二:超时
分析
从右向左枚举左边缘,setIndexs 记录各位为0的最小索引,vPre记录本位的上一个索引方便删除。
时间复杂度
O(nlogmax(loglogmax)+nlogmax)
核心代码
class Solution {
public:
int closestToTarget(vector<int>& arr, int target) {
m_c = arr.size();
const int iBitNum = 21;
vector<int> vPre(iBitNum, -1);
multiset<int> setIndexs;
int iRet = INT_MAX;
for (int left = m_c - 1; left >= 0; left--)
{
for (int iBit = 0; iBit < iBitNum; iBit++)
{
if (arr[left] & (1 << iBit))
{
continue;
}
if (-1 != vPre[iBit])
{
setIndexs.erase(setIndexs.find(vPre[iBit]));
}
setIndexs.emplace(left);
vPre[iBit] = left;
}
vector<int> vValue = { arr[left] };
for (const auto& index : setIndexs)
{
vValue.emplace_back(vValue.back() & arr[index]);
}
for (const auto& value : vValue)
{
iRet = min(iRet, abs(value - target));
}
}
return iRet;
}
int m_c;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
方法三:
分析
func(arr,l,r)等于arr[l]&func(arr,l+1,r)。
令iMax=max(nums[i]) ,func(arr,l,x) x取值范围[l,n) 最多只有log(iMax)种可能。nums[i]最多有log(iMax)个二进制位为1,and只会将1变成0,不会将0变成1。所以1只会不断减少,最坏的情况下,每次减少一个1,共减少log(iMax)次。
时间复杂度
O(nlogmaxloglogmax)。稳定能过。
class Solution {
public:
int closestToTarget(vector<int>& arr, int target) {
m_c = arr.size();
set<int> setPre = { arr.back() };
int iRet = abs(arr.back() - target);
for (int left = m_c - 1-1; left >= 0; left--)
{
set<int> dp = { arr[left] };
for (const auto& pr : setPre)
{
dp.emplace(pr & arr[left]);
}
setPre.swap(dp);
for (const auto& pr : setPre)
{
iRet = min(iRet, abs(pr - target));
}
}
return iRet;
}
int m_c;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
方法四
分析
dp本来就是降序,所有用向量也可以判断是否重复,换成向量速度再次提升。理论上速度可以提升几倍,实际提升50%左右。
时间复杂度
O(nlogmax)。
class Solution {
public:
int closestToTarget(vector<int>& arr, int target) {
m_c = arr.size();
vector<int> vPre = { arr.back() };
int iRet = abs(arr.back() - target);
for (int left = m_c - 1-1; left >= 0; left--)
{
vector<int> dp = { arr[left] };
for (const auto& pr : vPre)
{
const int iNew = pr & arr[left];
if (dp.back() != iNew)
{
dp.emplace_back(iNew);
}
}
vPre.swap(dp);
for (const auto& pr : vPre)
{
iRet = min(iRet, abs(pr - target));
}
}
return iRet;
}
int m_c;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
2023年3月第一版
class Solution {
public:
int closestToTarget(vector& arr, int target) {
std::set pre;
std::priority_queue queNear;
for (const auto& a : arr)
{
std::set dp;
for (const auto& pr : pre)
{
dp.insert(pr&a);
queNear.push(abs((pr&a)-target));
if (queNear.size() > 1)
{
queNear.pop();
}
}
dp.insert(a);
queNear.push(abs(a-target));
if (queNear.size() > 1)
{
queNear.pop();
}
pre.swap(dp);
}
return queNear.top();
}
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
墨子曰:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
评论记录:
回复评论: