首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C++二分算法:得到山形数组的最少删除次数

  • 24-02-19 21:20
  • 3486
  • 11068
blog.csdn.net

题目

我们定义 arr 是 山形数组 当且仅当它满足:
arr.length >= 3
存在某个下标 i (从 0 开始) 满足 0 < i < arr.length - 1 且:
arr[0] < arr[1] < … < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > … > arr[arr.length - 1]
给你整数数组 nums​ ,请你返回将 nums 变成 山形状数组 的​ 最少 删除次数。
示例 1:
输入:nums = [1,3,1]
输出:0
解释:数组本身就是山形数组,所以我们不需要删除任何元素。
示例 2:
输入:nums = [2,1,1,5,6,2,3,1]
输出:3
解释:一种方法是将下标为 0,1 和 5 的元素删除,剩余元素为 [1,5,6,3,1] ,是山形数组。
参数范围:
3 <= nums.length <= 1000
1 <= nums[i] <= 109
题目保证 nums 删除一些元素后一定能得到山形数组。

分析

本题可以转换成:最长山形数组,再进一步转换成最长升序子序列。

时间复杂度

O(nlogn)。两轮:一,枚举山顶及左边的长度。二,枚举山顶及右边的长度。枚举某个山顶,需要二分查询,时间复杂度O(logn)。

变量解释

vLeftLenvLeftLen[i]表示以nums[i]结尾的最长升序子序列
vRightLenvRightLen [i]表示nums[i]开头的最长降序子序列 ,转置数组后,以X开头的降序序列就变成,以XX结尾的升序序列
mValueLen键:符合条件的子系列的结尾值,值:子系列长度。

计算vLeftLen[i] ,计算vRightLen[i]类似

如果不存在nums[j] < nums[i]vLeftLen[i] 为1
如果存在nums[j] < nums[i]vLeftLen[i] 为1+vLeftLen[j],如果有多个j,结果取最大值

如果某个组合的 值大,长度小,则别淘汰。值越大,越难被选中;长度小,新长度就小。淘汰后,mValueLen|的键和值都按升序排序。

注意:

vLeftLen[i]为1或vRightLen[i]为1,无法形成山行数组。山顶左右都必须有元素。

代码

核心代码

template<class _Kty,class _Ty,bool bValueDdes,bool bOutSmallKey> 
class COrderValueMap 
{
public:
	void Add (_Kty iValue, _Ty iNum)
	{
		if (bOutSmallKey)
		{
			if (bValueDdes)
			{
				AddOutSmall(iValue, iNum, std::less_equal<_Ty>(), std::greater_equal<_Ty>());
			}
			else
			{
				
			}
		}
		else 
		{
			if (bValueDdes)
			{
				AddNotOutSmall(iValue, iNum, std::greater_equal<_Ty>(), std::less_equal<_Ty>());
			}
			else
			{
				AddNotOutSmall(iValue, iNum, std::less_equal<_Ty>(), std::greater_equal<_Ty>());
			}
		}
	};
	template<class _Pr1, class _Pr2>
	void AddOutSmall(_Kty key, _Ty value, _Pr1 pr1, _Pr2 pr2)
	{
		auto it = m_map.lower_bound(key);
		if ((m_map.end() != it) && pr1(it->second, value))
		{
			return;//被旧值淘汰
		}
		auto ij = it;
		while (it != m_map.begin())
		{
			--it;
			if (pr2(it->second, value))
			{
				it = m_map.erase(it);
			}
		}
		m_map[key] = value;
	}
	template<class _Pr1, class _Pr2>
	void AddNotOutSmall(_Kty key, _Ty value, _Pr1 pr1,_Pr2 pr2 )
	{
		auto it = m_map.upper_bound(key);
		if ((m_map.begin() != it) && pr1(std::prev(it)->second, value))
		{
			return;//被淘汰
		}
		auto ij = it;
		for (; (m_map.end() != ij) && pr2(ij->second, value); ++ij);
		m_map.erase(it, ij);
		m_map[key] = value;
	};
	std::map<_Kty, _Ty> m_map;
};

class Solution {
public:
	int minimumMountainRemovals(vector<int>& nums) {
		vector<int> vLeftLen,vRightLen;
		Do(vLeftLen, nums);
		Do(vRightLen, vector<int>(nums.rbegin(), nums.rend()));
		std::reverse(vRightLen.begin(), vRightLen.end());
		int iMaxLen = 0;
		for (int i = 1; i+1 < nums.size(); i++)
		{
			if ((vLeftLen[i] > 1) && (vRightLen[i] > 1))
			{
				iMaxLen = max(iMaxLen, vLeftLen[i] + vRightLen[i] - 1);
			}
		}
		return nums.size() - iMaxLen;
	}
	void Do(vector<int>& vLen, const vector<int> nums)
	{
		COrderValueMap<int, int, true, false> mValueLen;
		for (const auto& n : nums)
		{
			auto it = mValueLen.m_map.lower_bound(n);
			int iNewLen = 1;
			if (mValueLen.m_map.begin() != it)
			{
				iNewLen += std::prev(it)->second;
			}
			mValueLen.Add(n, iNewLen);
			vLen.emplace_back(iNewLen);
		}
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}

int main()
{
vector nums;
int res;
{
Solution slu;
nums = { 1,3,1 };
res = slu.minimumMountainRemovals(nums);
Assert(0, res);
}
{
Solution slu;
nums = { 2, 1, 1, 5, 6, 2, 3, 1 };
res = slu.minimumMountainRemovals(nums);
Assert(3, res);
}
{
Solution slu;
nums = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
res = slu.minimumMountainRemovals(nums);
Assert(2, res);
}
{
Solution slu;
nums = { 100, 92, 89, 77, 74, 66, 64, 66, 64 };
res = slu.minimumMountainRemovals(nums);
Assert(6, res);
}
{
Solution slu;
nums = { 1, 2, 1, 3, 4, 4 };
res = slu.minimumMountainRemovals(nums);
Assert(3, res);
}

//CConsole::Out(res);
  • 1

}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/134537345"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top