defimshow(inp, title=None):"""Imshow for Tensor."""
inp = inp.numpy().transpose((1,2,0))
mean = np.array([0.485,0.456,0.406])
std = np.array([0.229,0.224,0.225])
inp = std * inp + mean
inp = np.clip(inp,0,1)
plt.imshow(inp)if title isnotNone:
plt.title(title)
plt.pause(0.001)# pause a bit so that plots are updated# Get a batch of training data
inputs, classes =next(iter(dataloaders['train']))# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x]for x in classes])
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
模型训练
训练模型的代码示例如下所示:
deftrain_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc =0.0for epoch inrange(num_epochs):print(f'Epoch {epoch}/{num_epochs -1}')print('-'*10)# Each epoch has a training and validation phasefor phase in['train','val']:if phase =='train':
model.train()# Set model to training modeelse:
model.eval()# Set model to evaluate mode
running_loss =0.0
running_corrects =0# Iterate over data.for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)# zero the parameter gradients
optimizer.zero_grad()# forward# track history if only in trainwith torch.set_grad_enabled(phase =='train'):
outputs = model(inputs)
_, preds = torch.max(outputs,1)
loss = criterion(outputs, labels)# backward + optimize only if in training phaseif phase =='train':
loss.backward()
optimizer.step()# statistics
running_loss += loss.item()* inputs.size(0)print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# deep copy the modelprint(f'Training complete in {time_elapsed //60:.0f}m {time_elapsed %60:.0f}s')print(f'Best val Acc: {best_acc:4f}')# load best model weights
model.load_state_dict(best_model_wts)return model
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)# zero the parameter gradients
optimizer.zero_grad()# forward# track history if only in trainwith torch.set_grad_enabled(phase =='train'):
outputs = model(inputs)
_, preds = torch.max(outputs,1)
loss = criterion(outputs, labels)
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
model_conv = torchvision.models.resnet18(pretrained=True)for param in model_conv.parameters():
param.requires_grad =False# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs,2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()# Observe that only parameters of final layer are being optimized as# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
Training complete in 1m 11s
Best val Acc:0.921569
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
1
2
图像二分类任务精度达92%,就问你喜不喜欢。 下面的结果,也证实了准确率:
分类结果
模型保存
模型保存就不再赘述啦,可以私信本人获取,单张图像预测的代码也可以找我! 你要的整体代码如下:
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
cudnn.benchmark =True
plt.ion()# interactive mode####################################################################### Load Data# ---------#
data_transforms ={'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),}
data_dir ='data/hymenoptera_data'
image_datasets ={x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])for x in['train','val']}
dataloaders ={x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)for x in['train','val']}
dataset_sizes ={x:len(image_datasets[x])for x in['train','val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")####################################################################### Visualize a few images# ^^^^^^^^^^^^^^^^^^^^^^# Let's visualize a few training images so as to understand the data# augmentations.defimshow(inp, title=None):"""Imshow for Tensor."""
inp = inp.numpy().transpose((1,2,0))
mean = np.array([0.485,0.456,0.406])
std = np.array([0.229,0.224,0.225])
inp = std * inp + mean
inp = np.clip(inp,0,1)
plt.imshow(inp)if title isnotNone:
plt.title(title)
plt.pause(0.001)# pause a bit so that plots are updated# Get a batch of training data
inputs, classes =next(iter)# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x]for x in classes])####################################################################### Training the model# ------------------## Now, let's write a general function to train a model. Here, we will# illustrate:## - Scheduling the learning rate# - Saving the best model## In the following, parameter ``scheduler`` is an LR scheduler object from# ``torch.optim.lr_scheduler``.deftrain_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc =0.0for epoch inrange(num_epochs):print(f'Epoch {epoch}/{num_epochs -1}')print('-'*10)# Each epoch has a training and validation phasefor phase in['train','val']:if phase =='train':
model.train()# Set model to training modeelse:
model.eval()# Set model to evaluate mode
running_loss =0.0
running_corrects =0# Iterate over data.for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)# zero the parameter gradients
optimizer.zero_grad()# forward# track history if only in trainwith torch.set_grad_enabled(phase =='train'):
outputs = model(inputs)
_, preds = torch.max(outputs,1)
loss = criterion(outputs, labels)# backward + optimize only if in training phaseif phase =='train':
loss.backward()
optimizer.step()# statistics
running_loss += loss.item()* inputs.size(0)
running_corrects += torch.sum(preds == labels.data)if phase =='train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double()/ dataset_sizes[phase]print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# deep copy the modelif phase =='val'and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())print()
time_elapsed = time.time()- since
print(f'Training complete in {time_elapsed //60:.0f}m {time_elapsed %60:.0f}s')print(f'Best val Acc: {best_acc:4f}')# load best model weights
model.load_state_dict(best_model_wts)return model
####################################################################### Visualizing the model predictions# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^## Generic function to display predictions for a few images#defvisualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far =0
fig = plt.figure()with torch.no_grad():for i,(inputs, labels)inenumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs,1)for j inrange(inputs.size()[0]):
images_so_far +=1
ax = plt.subplot(num_images//2,2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])if images_so_far == num_images:
model.train(mode=was_training)return
model.train(mode=was_training)####################################################################### Finetuning the convnet# ----------------------## Load a pretrained model and reset final fully connected layer.#
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs,2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)####################################################################### Train and evaluate# ^^^^^^^^^^^^^^^^^^## It should take around 15-25 min on CPU. On GPU though, it takes less than a# minute.#
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)#######################################################################
visualize_model(model_ft)####################################################################### ConvNet as fixed feature extractor# ----------------------------------## Here, we need to freeze all the network except the final layer. We need# to set ``requires_grad = False`` to freeze the parameters so that the# gradients are not computed in ``backward()``.## You can read more about this in the documentation# `here `__.#
model_conv = torchvision.models.resnet18(pretrained=True)for param in model_conv.parameters():
param.requires_grad =False# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs,2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()# Observe that only parameters of final layer are being optimized as# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)####################################################################### Train and evaluate# ^^^^^^^^^^^^^^^^^^## On CPU this will take about half the time compared to previous scenario.# This is expected as gradients don't need to be computed for most of the# network. However, forward does need to be computed.#
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)#######################################################################
visualize_model(model_conv)
plt.ioff()
plt.show()
class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
评论记录:
回复评论: