项目介绍
该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了 YOLOv4 目标检测算法和 DeepSORT 目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪。
YOLOv4 是一种高效的目标检测算法,它基于深度卷积神经网络,可以在实时性要求比较高的场景下进行目标检测。DeepSORT 是一种基于卡尔曼滤波器和匈牙利算法的目标跟踪算法,可以将视频帧中的目标在时间序列中进行跟踪,并且可以自适应地调整卡尔曼滤波器的参数,以提高跟踪的精度和鲁棒性。
主要功能
视频目标检测和跟踪:该项目可以读取本地或者云端的视频文件,对视频帧中的目标进行检测和跟踪,并且可以将跟踪结果保存为视频文件或者输出为实时视频流。
目标检测和跟踪参数的调整:该项目提供了一些参数可以调整,包括目标检测的置信度阈值、目标跟踪的匹配阈值、卡尔曼滤波器的参数等等,用户可以根据实际场景进行调整,同时也进行了自适应卡尔曼滤波。
相机标定:该项目还提供了相机标定的工具,可以对相机进行标定,以提高目标检测和跟踪的精度。
多目标跟踪:该项目支持同时跟踪多个目标,可以通过目标 ID 进行区分和跟踪。
面向对象
该项目的实现比较简单和易于理解,适合初学者和学习者使用。同时,该项目的代码也是开源的,用户可以根据自己的需要进行修改和扩展。需要注意的是,该项目的使用需要一定的计算资源和算法实现能力,同时也需要一些深度学习和目标跟踪的基本知识。
在这里插入图片描述
YOLOv4-DeepSort项目实战
依赖项
- Python 3.x
- TensorFlow 2.x
- OpenCV 4.x
- NumPy
- SciPy
- Matplotlib
安装
-
克隆本项目:
git clone my_project.git 或者联系我获取压缩包------qq1309399183------- class="hljs-button signin" data-title="登录后复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
评论记录:
回复评论: