class="hljs-ln-code"> class="hljs-ln-line">    for(int i=0; i
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">        System.out.println("等待一天");
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">        System.out.println("等待一天");
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">        System.out.println("吃一寸面包");
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">    }
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">}
  • class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">vo
  • class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    场景2:T(n) = 5logn,执行次数是对数的。

    1. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">void eat2(int n){
    2. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">   for(int i=1; i2){
    3. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("等待一天");
    4. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("等待一天");
    5. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("等待一天");
    6. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("等待一天");
    7. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("吃一半面包");
    8. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">   }
    9. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="9"> class="hljs-ln-code"> class="hljs-ln-line">}
    class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    场景3:T(n) = 2,执行次数是常量的。

    1. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">void eat3(int n){
    2. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">   System.out.println("等待一天");
    3. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">   System.out.println("吃一个鸡腿");
    4. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">}
    class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

    场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

    1. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="1"> class="hljs-ln-code"> class="hljs-ln-line">void eat4(int n){
    2. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="2"> class="hljs-ln-code"> class="hljs-ln-line">   for(int i=0; i<n; i++){
    3. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="3"> class="hljs-ln-code"> class="hljs-ln-line">       for(int j=0; j<i; j++){
    4. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="4"> class="hljs-ln-code"> class="hljs-ln-line">           System.out.println("等待一天");
    5. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="5"> class="hljs-ln-code"> class="hljs-ln-line">       }
    6. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="6"> class="hljs-ln-code"> class="hljs-ln-line">       System.out.println("吃一寸面包");
    7. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="7"> class="hljs-ln-code"> class="hljs-ln-line">   }
    8. class="hljs-ln-numbers"> class="hljs-ln-line hljs-ln-n" data-line-number="8"> class="hljs-ln-code"> class="hljs-ln-line">}
    class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}" onclick="hljs.signin(event)">

     

    640?wx_fmt=png

    渐进时间复杂度

     

    有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

    比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

    所以,这时候有了渐进时间复杂度(asymptotic time complexity)的概念,官方的定义如下:

    若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

    记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

    渐进时间复杂度用大写O来表示,所以也被称为大O表示法。

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    如何推导出时间复杂度呢?有如下几个原则:

    1. 如果运行时间是常数量级,用常数1表示;

    2. 只保留时间函数中的最高阶项;

    3. 如果最高阶项存在,则省去最高阶项前面的系数。

    让我们回头看看刚才的四个场景。

    场景1:

    T(n) = 3n 

    最高阶项为3n,省去系数3,转化的时间复杂度为:

    T(n) =  O(n)

    640?wx_fmt=png

    场景2:

    T(n) = 5logn 

    最高阶项为5logn,省去系数5,转化的时间复杂度为:

    T(n) =  O(logn)

    640?wx_fmt=png

    场景3:

    T(n) = 2

    只有常数量级,转化的时间复杂度为:

    T(n) =  O(1)

    640?wx_fmt=png

    场景4:

    T(n) = 0.5n^2 + 0.5n

    最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

    T(n) =  O(n^2)

    640?wx_fmt=png

    这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

    O(1)< O(logn)< O(n)< O(n^2)

    在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

    O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

    今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。

    640?wx_fmt=png

     

    640?wx_fmt=png

    时间复杂度的巨大差异

     

     

    640?wx_fmt=jpeg

    640?wx_fmt=jpeg

    我们来举过一个栗子:

    算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

    算法B的相对时间规模是T(n)= 5n^2,时间复杂度是O(n^2)

    算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

    那么,随着输入规模 n 的增长,两种算法谁运行更快呢?

    640?wx_fmt=png

    从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。

    这就是不同时间复杂度带来的差距。

    640?wx_fmt=jpeg

    如果感觉还不错,点个赞↗ 支持一下吧 ~

    随后还会不定期更新同类型文章,欢迎订阅关注我的博客 ~

    下一篇:400+条实用C/C++框架、库、工具整理 ,你能想到的都在这里了

    上一篇: Facebook前身 哈佛大学"选美"网站核心算法 -- ELO等级分制度(附源码)

    >>
    注:本文转载自blog.csdn.net的12 26 25的文章"https://blog.csdn.net/qq_41523096/article/details/82142747#comments"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
    复制链接

    评论记录:

    未查询到任何数据!