1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
java解法
解题思路 本题的目的是通过二分查找来最大化 reliability(可靠性),在保证总成本不超过给定预算 budget 的前提下,为每种组件类型选择一个合适的组件,使得最终的 reliability 最大。具体步骤如下:
输入解析:
首先读取预算 budget,组件类型数 types 和总组件数 totalComponents。 然后读取每个组件的类型、可靠性 reliability 和价格 price,将它们存储到对应的 components 列表中,按组件类型分类。 二分查找:
通过二分查找来确定最大的 reliability,范围从 0 到 100000(假设最大的可靠性为 100000,这个值可以根据具体题目调整)。 每次取中间值 mid,判断是否能在预算 budget 内选择满足 reliability >= mid 的组件。如果可以,就尝试更大的 reliability;否则尝试更小的 reliability。 判断是否能够在预算内选择组件:
对于每个组件类型,选择一个可靠性大于等于当前 mid 的最小价格的组件,并将其价格累加。 如果所有类型都有一个符合条件的组件且总价格不超过预算,返回 true,否则返回 false。 输出结果:
二分查找结束后,输出最大的可行 reliability
import java. util. * ;
public class Main {
static class Component {
int reliability, price;
Component ( int r, int p) {
this . reliability = r;
this . price = p;
}
}
public static void main ( String [ ] args) {
Scanner sc = new Scanner ( System . in) ;
int budget = sc. nextInt ( ) ;
int types = sc. nextInt ( ) ;
int totalComponents = sc. nextInt ( ) ;
List < List < Component > > components = new ArrayList < > ( types) ;
for ( int i = 0 ; i < types; i++ ) {
components. add ( new ArrayList < > ( ) ) ;
}
for ( int i = 0 ; i < totalComponents; i++ ) {
int type = sc. nextInt ( ) ;
int reliability = sc. nextInt ( ) ;
int price = sc. nextInt ( ) ;
components. get ( type) . add ( new Component ( reliability, price) ) ;
}
System . out. println ( findMaxReliability ( components, budget) ) ;
}
private static int findMaxReliability ( List < List < Component > > components, int budget) {
int low = 0 , high = 100000 , bestReliability = - 1 ;
while ( low <= high) {
int mid = low + ( high - low) / 2 ;
if ( canAfford ( components, mid, budget) ) {
bestReliability = mid;
low = mid + 1 ;
} else {
high = mid - 1 ;
}
}
return bestReliability;
}
private static boolean canAfford ( List < List < Component > > components, int targetReliability, int budget) {
int cost = 0 ;
for ( List < Component > typeList : components) {
int minPrice = Integer . MAX_VALUE ;
for ( Component comp : typeList) {
if ( comp. reliability >= targetReliability) {
minPrice = Math . min ( minPrice, comp. price) ;
}
}
if ( minPrice == Integer . MAX_VALUE ) return false ;
cost += minPrice;
}
return cost <= budget;
}
}
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
C++解法
更新中
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
C解法
更新中
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
JS解法
解题思路:
输入解析:
我们首先读取预算 s,设备类型的数量 n 和设备的总数 total。 然后将每个设备按其类型分组,同时记录每个设备的可靠性和价格。 二分查找最大可靠性:
由于设备的可靠性范围较大,我们使用二分查找来寻找最大可靠性 r,使得对于这个 r,选出的所有设备的总价格不超过预算。 对每个设备类型,我们选择第一个可靠性大于等于 r 的设备,并累加它们的价格,直到总价格不超过预算。 检查某个可靠性值是否可行:
对于每个设备类型,我们按可靠性排序,使用二分查找来选择可靠性大于等于目标值的设备,计算其价格并检查总和是否在预算之内。 二分查找的辅助函数:
使用二分查找来查找某个可靠性大于等于目标值的设备,确保搜索效率
const rl = require ( "readline" ) ;
class Device {
constructor ( rel, prc ) {
this . rel = rel;
this . prc = prc;
}
}
async function run ( ) {
const r = rl. createInterface ( { input : process. stdin } ) ;
const iter = r[ Symbol. asyncIterator] ( ) ;
const read = async ( ) => ( await iter. next ( ) ) . value;
const [ s, n] = ( await read ( ) ) . split ( " " ) . map ( Number) ;
const reliabilities = new Set ( ) ;
const kinds = Array. from ( { length : n } , ( ) => [ ] ) ;
const total = parseInt ( await read ( ) ) ;
for ( let i = 0 ; i < total; i++ ) {
const [ type, reliability, price] = ( await read ( ) ) . split ( " " ) . map ( Number) ;
reliabilities. add ( reliability) ;
kinds[ type] . push ( new Device ( reliability, price) ) ;
}
console. log ( getResult ( s, kinds, Array. from ( reliabilities) . sort ( ( a, b ) => a - b) ) ) ;
r. close ( ) ;
}
function getResult ( s, kinds, reliabilities ) {
for ( let kind of kinds) {
kind. sort ( ( a, b ) => a. rel - b. rel) ;
}
let ans = - 1 ;
let low = 0 ;
let high = reliabilities. length - 1 ;
while ( low <= high) {
const mid = ( low + high) >> 1 ;
if ( check ( kinds, reliabilities[ mid] , s) ) {
ans = reliabilities[ mid] ;
low = mid + 1 ;
} else {
high = mid - 1 ;
}
}
return ans;
}
function check ( kinds, maxReliability, s ) {
let sum = 0 ;
for ( let kind of kinds) {
let idx = binarySearch ( kind, maxReliability) ;
if ( idx < 0 ) idx = - idx - 1 ;
if ( idx === kind. length) return false ;
sum += kind[ idx] . prc;
}
return sum <= s;
}
function binarySearch ( kind, target ) {
let low = 0 ;
let high = kind. length - 1 ;
while ( low <= high) {
const mid = ( low + high) >> 1 ;
if ( kind[ mid] . rel > target) {
high = mid - 1 ;
} else if ( kind[ mid] . rel < target) {
low = mid + 1 ;
} else {
return mid;
}
}
return - low - 1 ;
}
run ( ) ;
class="hljs-button signin active" data-title="登录复制" data-report-click="{"spm":"1001.2101.3001.4334"}">
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
注意:
如果发现代码有用例覆盖不到的情况,欢迎反馈!会在第一时间修正,更新。 解题不易,如对您有帮助,欢迎点赞/收藏
评论记录:
回复评论: