首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别

  • 25-03-06 05:08
  • 3807
  • 9379
blog.csdn.net

1.前言

参考资料:https://www.zhihu.com/question/28845451

书上写的是:

1. 主成分分析假设源信号间彼此非相关,独立成分分析假设源信号间彼此独立。
2. 主成分分析认为主元之间彼此正交,样本呈高斯分布; 独立成分分析则不要求样本呈高斯分布。
在利用最大化信息熵的方法进行独立成分分析的时候,需要为源信号假定一个概率密度分布函数g',进而找出使得g(Y)=g(Wx)的信息熵最大的变换W,即有Y=s。
我的问题是,
1. 这个概率密度分布函数怎么假定?在实际信号处理中怎么给出?

2. 如果我观测到信号呈高斯分布,取g'为高斯分布,那么ICA和PCA得到的结果会相同吗?

2.解析

不管是PCA还是ICA,都不需要对源信号的分布做具体的假设;如果观察到的信号为高斯,那么源信号也为高斯,此时PCA和ICA等价。下面稍作展开。

假设观察到的信号是n维随机变量主成分分析(PCA)和独立成分分析(ICA)的目的都是找到一个方向,即一个n维向量使得线性组合的某种特征最大化。

2.1主成分分析 PCA

PCA

注:本文转载自blog.csdn.net的的文章"https://blog.csdn.net/shenziheng1/article/details/53547401"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top