首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

独立成分分析ICA系列1:意义

  • 25-03-06 05:08
  • 3231
  • 5102
blog.csdn.net

1.前言

独立成分分析思想和方法最早源于上世纪八十年代几个法国学者的研究工作,尽管当时他们并没有命名其为ICP;在1986年举行的神经网络计算会议上,法国学者Heraull和Jutten提出了一个基于神经网络模型和Hebb学习准则的方法,来解决盲源分离问题,简称BSS.
混合信号是由相互统计独立的源信号混合而成的。这篇文章提出的算法可以解决具有两个源信号混合的盲源分离问题。他们的工作开创了信号处理领域的新纪元,从此盲源分离问题得到了各国学者的广泛重视。但在当时,仅为法国学者所研究,在国际上的影响十分有限。八十年代国际神经网络会议上,当时少数有关的文章被埋没于back-propagation网络、Kohonen自组织网络的研究热潮中,并没有引起各国学者足够的重视。
进入到上世纪九十年代初期,某些学者开始了这方面的研究,他们扩展了八十年代有关盲分离问题的一些工作,其中,学者Cichochi和Unbehauen提出了当时较为流行的ICP算法。芬兰学者Ojs,Ksrhunen,等提出了“非线性ICP ”方法,然而,直到九十年代中期,仍然只得到少数学者的关注,主要原因是这些学者提出的算法所能解决的问题是相当有限的。
事实上,解决盲源分离问题是一个非常困难的任务,因为我们不知道源信号的任何信息,在Heraull和Jutten提出的算法中,只作了两个假设:一个是假设源信号是相互统计独立的,另一个是假设己知源信号的统计分布
注:本文转载自blog.csdn.net的的文章"https://blog.csdn.net/shenziheng1/article/details/53635530"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top