首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

FPGA实现GTH光口视频缩放传输,基于Aurora 8b/10b编解码架构,提供工程源码和技术支持

  • 25-03-04 14:42
  • 3264
  • 6690
blog.csdn.net

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
    • 我这里已有的 GT 高速接口解决方案
    • 我这里已有的FPGA图像缩放方案
  • 3、工程详细设计方案
    • 工程设计原理框图
    • HDMI 输入
    • 纯Verilog图像缩放模块详解
    • 纯Verilog图像缩放模块使用(重点阅读)
    • 视频数据组包
    • 基于GTH高速接口的视频传输架构
      • GTH IP 简介
      • GTH 基本结构
      • GTH 发送和接收处理流程
      • GTH 的参考时钟
      • GTH 发送接口
      • GTH 接收接口
      • GTH IP核调用和使用
    • 数据对齐
    • 视频数据解包
    • FDMA图像缓存
    • HDMI 输出
    • 工程源码架构
  • 4、vivado工程源码1详解-->Virtex7--690T,HDMI输入版本
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证
    • 准备工作
    • GTH光口视频传输效果演示
  • 7、工程代码的获取

FPGA实现GTH光口视频缩放传输,基于Aurora 8b/10b编解码架构,提供工程源码和技术支持

1、前言

FPGA实现SFP光口视频编解码现状;
目前基于Xilinx系列FPGA的SFP光口视频编解码主要有以下几种,Artix7系列的GTP、Kintex7系列的GTX、更高端FPGA器件的GTH、GTY、GTV、GTM等,线速率越来越高,应用场景也越来越高端;编码方式也是多种多样,有8b/10b编解码、64b/66b编解码、HDMI编解码、SDI编解码等等;本设计采用7系列的GTH作为高速接口、8b/10b编解码的方式实现SFP光口视频编解码;

工程概述

本设计使用Xilinx Virtex7系列FPGA为平台,实现GTP 8b/10b编解码视频传输;视频输入源为板载的HDMI输入接口,如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认使用HDMI输入;FPGA首先对HDMI编解码芯片进行i2c初始化配置,然后采集HDMI输入视频;然后使用自研的、纯verilog实现的、支持任意比例缩放的图像缩放模块实现对输入视频的图像缩放操作;然后缩放视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTH IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTH IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;然后Native视频时序控制FDMA从DDR3中读取视频并同步输出RGB888视频流;然后使用silicom9134专用芯片实现RGB视频流转HDMI差分视频信号;最后用显示器显示视频即可;针对市场主流需求,本博客设计并提供1套工程源码,具体如下:

工程源码1

开发板FPGA型号为Xilinx–>Virtex7–690T–xc7vx690tffg1761-3;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的silicom9011芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对silicom9011进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后使用自研、纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;然后缩放视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTH IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTH IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;然后Native视频时序控制FDMA从DDR3中读取视频并同步输出RGB888视频流;然后使用silicom9134专用芯片实现RGB视频流转HDMI差分视频信号,输出分辨率为1280x720@60Hz;由此形成Sensor+图像缩放+高速接口+光编码+HDMI的高端架构;该工程适用于SFP光口的视频采集卡(光端机)应用;

本博客详细描述了FPGA基于Aurora 8b/10b编解码架构实现GTH光口视频缩放传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往

我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

我这里已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

3、工程详细设计方案

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

HDMI 输入

输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,使用Silcom9011,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对Silcom9011芯片的配置,分辨率配置为1920x1080@60Hz;Silcom9011的i2c配置代码如下:
在这里插入图片描述
可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
整个模块代码架构如下:
在这里插入图片描述

纯Verilog图像缩放模块详解

本设计的图像缩放模块使用纯Verilog方案,功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
在这里插入图片描述
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
依据上图,图像缩放模块内部核心是例化了4个双口RAM,作用是缓存4行图像,以得到4个临近的像素,以此为基础做线性插值;如果是做图像放大操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中插入更多的像素点来扩大分辨率;如果是做图像缩小操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中删除更多的像素点来缩小分辨率;此外,前面描述的工作是实时的、整幅图像全部扫描式的进行,所以需要对RAM的读写操作进行精准控制;

图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
在这里插入图片描述
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:
在这里插入图片描述
FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;

2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor
  • 1

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

代码里的配置如下:
在这里插入图片描述

纯Verilog图像缩放模块使用(重点阅读)

图像缩放模块使用非常简单,顶层代码里设置了四个参数,举例如下:
在这里插入图片描述
上图是将输入视频分辨率从1280x720缩放为1920x1080;
如果你想将输入视频分辨率从1280x720缩放为640x480;
则只需修改为如下:
在这里插入图片描述
再比如你想将输入视频分辨率从1280x720缩放为960x540;
则只需修改为如下:
在这里插入图片描述
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;

在本博主这里,想要实现图像缩放,操作就是这么无脑简单,就该两个参数就能搞定貌似高大上的双线性插值图像缩放,这种设计、这种操作、这种工程源码,你还喜欢吗?

视频数据组包

由于视频需要在GTH 中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTH发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTH组包时根据固定的指令进行数据发送,GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
注意!!!指令可以任意更改,但最低字节必须为bc;

基于GTH高速接口的视频传输架构

本设计使用GTH高速接口传输视频,使用8b/10b编解码协议,搭建基于GTH高速接口的视频传输架构,包括视频数据组包模块、GTH IP核配置调用、接收数据对齐模块、视频数据解包模块等部分,总体代码架构如下:
在这里插入图片描述
基于GTH高速接口的视频传输架构顶层接口核参数配置如下:
在这里插入图片描述
本设计共例化了2路GTH,所以2路GTH的收发回环方式也做了灵活的参数化配置,如果你只需要1路GT,则可删除另一路,如果你想例化更多路GT,则可根据上述设计方法扩展,十分方便;

GTH IP 简介

关于GTH 介绍最详细的肯定是Xilinx官方的《ug476_7Series_Transceivers》,我们以此来解读:《ug476_7Series_Transceivers》的PDF文档我已放在了资料包里;我用到的开发板FPGA型号为Xilinx–Virtex7–xc7vx690tffg1761-3;带有36路GTX资源,其中2路连接到了板载2个SFP光口,每通道的收发速度为 500 Mb/s 到 10.3125 Gb/s 之间。GTH 收发器支持不同的串行传输接口或协议,比如8b/10b编解码、PCIE /2.0/3.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTH 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTH 收发器在Virtex7 FPGA 芯片中的示意图:GTH 与GTX为同一个数据手册,所以下图实为K7的GTX,但GTX核GTH内部构造是一样的;《ug476_7Series_Transceivers》第24页;GTH 具体内部逻辑框图如下所示,它由四个收发器通道 GTXE2_CHANNEL原语 和一个GTXE2_COMMON 原语组成。每路GTXE2_CHANNEL包含发送电路 TX 和接收电路 RX,GTXE2_CHANNEL的时钟可以来自于CPLL或者QPLL,可在IP配置界面里配置;《ug476_7Series_Transceivers》第25页;每个 GTXE2_CHANNEL 的逻辑电路如下图所示:《ug476_7Series_Transceivers》第26页;
在这里插入图片描述
GTXE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTH 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTH 的参考时钟

GTH 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTH 模块的参考时钟源,用户可以自行选择。一般开发板上都有一路125或者156.25Mhz 的 GTH 参考时钟连接到 MGTREFCLK0上,作为 GTH 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTXE2_COMMOM 的QPLL或CPLL中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTH 的参考时钟结构图如下:《ug476_7Series_Transceivers》第31页;
在这里插入图片描述

GTH 发送接口

《ug476_7Series_Transceivers》的第107到165页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;用户只需要关心发送接口的时钟和数据即可,以例化2路GTH 为例,经本博主优化,用户只需要关心如下GTH 发送接口即可快速使用GTH ;
在这里插入图片描述

GTH 接收接口

《ug476_7Series_Transceivers》的第167到295页详细介绍了接收处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;用户只需要关心接收接口的时钟和数据即可,以例化2路GTH 为例,经本博主优化,用户只需要关心如下GTH 接收接口即可快速使用GTH ;
在这里插入图片描述

GTH IP核调用和使用

GTH IP核配置调用在工程种位置如下:
在这里插入图片描述
GTH IP核调用和使用很简单,通过vivado的UI界面即可完成,如下:
在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTH需要那么复杂么?GTH协议层配置如下:
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTH的范围是0.5到13.1G,由于我的项目是视频传输,所以在GTH的速率范围内均可,本例程选择了5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是156.25M;
4:GTH组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug476_7Series_Transceivers》,官方根据BANK不同将GTH资源分成了多组,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTH组和引脚是怎么对应的呢?《ug476_7Series_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;数据对齐模块顶层接口如下:
在这里插入图片描述

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;由于数据解包是数据组包的逆过程,所以这里不再过多赘述,视频数据解包模块顶层接口如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;图像缓存模块代码架构如下:
在这里插入图片描述
基于FDMA的图像缓存架构在Block Design设计中如下:
在这里插入图片描述

HDMI 输出

使用Silcom9134专用芯片实现HDMI编码,即将RGB888视频编码为TDMS差分视频流输出,Silcom9134需要i2c配置才能工作,代码如下:
在这里插入图片描述

工程源码架构

提供1套工程源码,工程Block Design设计如下:
在这里插入图片描述
提供1套工程源码,综合后的工程源码架构如下:
在这里插入图片描述
工程编译后资源消耗低、功耗低、时序收敛,符合工程项目应用要求,如下:
在这里插入图片描述
上图只是举例,资源消耗并非本工程的实际消耗,实际消耗请看下文的《工程代码详解》;

4、vivado工程源码1详解–>Virtex7–690T,HDMI输入版本

开发板FPGA型号:Xilinx–>Virtex7–690T–xc7vx690tffg1761-3;
FPGA开发环境:Vivado2019.1;
输入:HDMI或者FPGA内部动态彩条,silicom9011芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:HDMI,silicom9134芯片编码方案,输出分辨率1280x720@60Hz;
图像缩放方案:纯verilog代码实现、任意比例缩放的图像缩放模块;
图像缩放用例:1920x1080缩放到1280x720;
回环光口类型:SFP光口;
高速接口类型:GTH,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
图像缓存方案:FDMA图像缓存+DDR3颗粒+3帧缓存;
实现功能:FPGA实现GTH光口视频传输;
工程作用:此工程目的是让读者掌握FPGA实现GTH光口视频传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证

准备工作

需要准备的器材如下:
笔记本电脑,没有则请使用FPGA内部生成的彩条;
FPGA开发板,没有开发板可以找本博提供;
SFP光模块和光纤;
我的开发板了连接如下:
在这里插入图片描述

GTH光口视频传输效果演示

GTH光口视频传输效果演示如下:

视频-图传

7、工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:文章末尾名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

源码技术支持加我微信哦
微信名片
注:本文转载自blog.csdn.net的9527华安的文章"https://blog.csdn.net/qq_41667729/article/details/132661982"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top