首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

FPGA 实现 LeNet-5 卷积神经网络 数字识别,提供工程源码和技术支持

  • 25-03-04 14:41
  • 3961
  • 14055
blog.csdn.net

目录

  • 1、前言
    • LeNet-5简洁
    • 基于Zynq7020 的设计说明
    • PL 端 FPGA 逻辑设计
    • PS 端 SDK 软件设计
    • 免责声明
  • 2、相关方案推荐
    • 卷积神经网络解决方案
    • FPGA图像处理方案
  • 3、详细设计方案
    • PL端:ov7725摄像头及图像采集
    • PL端:图像预处理
    • PL端:Xilinx推荐的图像缓存架构
    • PL端:识别结果的 PL 与 PS 交互
    • PL端:图像后处理
    • PL端:RGB 转 HDMI
    • PS端:图像获取
    • PS端:卷积层计算
    • PS端:池化层计算
    • PS端:隐藏层计算
    • PS端:输出层计算
  • 4、vivado工程介绍
    • PL 端 FPGA 逻辑设计工程
    • PS 端 SDK 软件设计工程
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • 输出静态演示
    • 输出动态演示
  • 7、福利:工程源码获取

FPGA 实现 LeNet-5 卷积神经网络 数字识别,提供工程源码和技术支持

1、前言

LeNet-5简洁

LeNet-5诞生于上世纪90年代,是CNN的开山之作,最早的卷积神经网络之一,用于手写数字识别(图像分类任务),它的诞生极大地推动了深度学习领域的发展。LeNet在多年的研究和迭代后,Yann LeCun将完成的这项开拓性成果被命名为LeNet5,并发表在论文《Gradient-Based Learning Applied to Document Recognition》上,如今的AlexNet、ResNet等都是在其基础上发展而来的,在当年是一种用于手写体字符识别的非常高效的卷积神经网络。如今的卷积神经网络模型早已沧海桑田,但作为基础入门的学习资料,LeNet-5依然在江湖中占有极其重要的一席之地;

基于Zynq7020 的设计说明

本文使用Xilinx的Kirtex Zynq7000系列的Zynq7020–xc7z020clg400-2型号FPGA 实现LeNet-5 卷积神经网络实现数字识别实验;基于Zynq7020的异构特性,本设计的图像采集、图像缓存、图像处理、图像输出用 PL 端的 FPGA 逻辑实现;LeNet-5 卷积神经网络的识别功能采用 PS 端的 SDK C语言软件实现;PS 端软件将识别结果通过 AXI-Lite 总线输出给 PL 端,实现了 PS 端软件与 PL 端硬件的交互;PL 端根据 PS 端软件的识别结果,将识别到的数字输出到显示器上,实现了人机交互;PL 和 PS 端是同步实时进行的;设计所用版本为vivado2019.1;

PL 端 FPGA 逻辑设计

输入视频源采用廉价的小分辨率的ov7725摄像头;Zynq软核通过EMIO模拟i2c总线配置ov7725摄像头分辨率为640x480;然后将输入视频送入纯verilog代码实现的视频采集模块,将DVP视频转换为RGB888视频;然后将视频送入纯verilog代码实现的图像预处理模块,该模块在640x480图像正中心框出一块122x122大小图像区域,该区域作为输入数字图像的采集区域,是后面的LeNet-5卷积神经网络进行识别的区域;然后调用Xilinx官方的 Video In to AXI4-Stream 将RGB888视频转换为AXI4-Stream视频;然后调用Xilinx官方的 VDMA 将视频缓存进PS侧DDR3再读出,为了低延时,VDMA设置为1帧缓存,需要在SDK中配置才能使用;然后调用Xilinx官方的 Video Timing Controller 和 AXI4-Stream to Video Out 将 AXI4-Stream 视频转换为 RGB888视频;然后调用Xilinx官方的 ps_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,送入图像后处理模块,该模块例化了10个 ROM ,存储了 0~9 的9个数字,并根据识别结果输出对应的数字到显示屏的右上角显示;然后将图像送入纯verilog代码实现的RGB转HDMI模块,该模块输出HDMI视频到显示器;

PS 端 SDK 软件设计

PS 端实现LeNet-5 卷积神经网络的识别功能,并将识别结果通过AXI-Lite 总线输出给 PL 端;首先在内存开辟一些列缓存空间,用来存储图像和LeNet-5 卷积神经网络计算的中间结果;软件先从 DDR3 中读取 28x28 大小的图像,然后存入事先开辟好的内存,由于需要识别的图像大小为122x122,所以需要取4次才能完整的取完一张图片;然后将图像送入卷积层计算,计算结果存入事先开辟好的内存;然后进行池化层计算,计算结果存入事先开辟好的内存;然后进行隐藏层计算,计算结果存入事先开辟好的内存;然后进行输出层计算,最后将输出结果通过AXI-Lite 总线输出给 PL 端;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

卷积神经网络解决方案

我的主页有FPGA 卷积神经网络专栏,该专栏有 LeNet、 CNN、 DNN等卷积神经网络FPGA实现方案;以下是专栏地址:
点击直接前往

FPGA图像处理方案

我的主页目前有FPGA图像处理专栏,改专栏收录了我目前手里已有的FPGA图像处理方案,包括图像缩放、图像识别、图像拼接、图像融合、图像去雾、图像叠加、图像旋转、图像增强、图像字符叠加等等;以下是专栏地址:
点击直接前往

3、详细设计方案

本文使用Xilinx的Kirtex Zynq7000系列的Zynq7020–xc7z020clg400-2型号FPGA 实现LeNet-5 卷积神经网络实现数字识别实验;基于Zynq7020的异构特性,本设计的图像采集、图像缓存、图像处理、图像输出用 PL 端的 FPGA 逻辑实现;LeNet-5 卷积神经网络的识别功能采用 PS 端的 SDK C语言软件实现;PS 端软件将识别结果通过 AXI-Lite 总线输出给 PL 端,实现了 PS 端软件与 PL 端硬件的交互;PL 端根据 PS 端软件的识别结果,将识别到的数字输出到显示器上,实现了人机交互;设计框图如下:
在这里插入图片描述

PL端:ov7725摄像头及图像采集

输入视频源采用廉价的小分辨率的ov7725摄像头;Zynq软核通过EMIO模拟i2c总线配置ov7725摄像头分辨率为640x480;然后将输入视频送入纯verilog代码实现的视频采集模块,将DVP视频转换为RGB888视频;摄像头采集部分代码如下:
在这里插入图片描述
这里采用ov7725摄像头的主要原因是他的分辨率很小,只有640x480@60Hz,卷积神经网络对输入图像的大小求小不求大,因为太大的图像耗费的运算时间很长;

PL端:图像预处理

然后将视频送入纯verilog代码实现的图像预处理模块,该模块在640x480图像正中心框出一块122x122大小图像区域,该区域作为输入数字图像的采集区域,是后面的LeNet-5卷积神经网络进行识别的区域;图像预处理模块代码如下:
在这里插入图片描述
图像预处理模块首先对输入图像进行RGB转灰度操作,将RGB888视频转为8bit的灰度图,这样有利于图像识别,因为图像识别需要的只是图像边沿和轮廓的像素信息,RGB分量显然数据量太大,灰度图则完美契合;然后图像进行框选处理,即框选出需要进行识别的区域,正如前面所说,卷积神经网络对输入图像的大小求小不求大,对于640x480的采集图像,我们并不是全部都纳入识别范围,而是选择了0图像正中心框出一块122x122大小图像区域,因为数字本身就不会太大,不太可能整个屏幕全是单个数字吧?实现的效果如下:
在这里插入图片描述

PL端:Xilinx推荐的图像缓存架构

然后调用Xilinx官方的 Video In to AXI4-Stream 将RGB888视频转换为AXI4-Stream视频;然后调用Xilinx官方的 VDMA 将视频缓存进PS侧DDR3再读出,为了低延时,VDMA设置为1帧缓存,需要在SDK中配置才能使用;然后调用Xilinx官方的 Video Timing Controller 和 AXI4-Stream to Video Out 将 AXI4-Stream 视频转换为 RGB888视频;这是一套标准的Xilinx推荐的图像缓存架构;

PL端:识别结果的 PL 与 PS 交互

调用Xilinx官方的 ps_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,并根据识别结果,将识别到的数字输出到显示器上;axi_lite是一个轻量级总线,在SDK里直接调用API即可写数据;

PL端:图像后处理

s_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,送入图像后处理模块,该模块例化了10个 ROM ,存储了 0~9 的9个数字,并根据识别结果输出对应的数字到显示屏的右上角显示;图像后处理模块代码如下:
在这里插入图片描述
图像后处理的核心操作是像素替换,当有识别结果输入时,在显示屏右上角显示对应的数字,否则显示原始的ov7725采集像素;实现的效果如下:
在这里插入图片描述

PL端:RGB 转 HDMI

然后将图像送入纯verilog代码实现的RGB转HDMI模块,该模块输出HDMI视频到显示器;RGB转HDMI模块代码如下:
在这里插入图片描述

PS端:图像获取

软件先从 DDR3 中读取 28x28 大小的图像,然后存入事先开辟好的内存,由于需要识别的图像大小为122x122,所以需要取4次才能完整的取完一张图片;代码如下:
在这里插入图片描述

PS端:卷积层计算

然后将图像送入卷积层计算,计算结果存入事先开辟好的内存;代码如下:
在这里插入图片描述
卷积模型由Python训练得到,并转换为C语言数组;卷积核详情请看注释,注释还在进一步优化中。。。

PS端:池化层计算

然后进行池化层计算,计算结果存入事先开辟好的内存;代码如下:
在这里插入图片描述
池化层详情请看注释,注释还在进一步优化中。。。

PS端:隐藏层计算

然后进行隐藏层计算,计算结果存入事先开辟好的内存;代码如下:
在这里插入图片描述
隐藏层详情请看注释,注释还在进一步优化中。。。

PS端:输出层计算

然后进行隐藏层计算,计算结果存入事先开辟好的内存;然后进行输出层计算,最后将输出结果通过AXI-Lite 总线输出给 PL 端;代码如下:
在这里插入图片描述

4、vivado工程介绍

PL 端 FPGA 逻辑设计工程

开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:OV7725摄像头,分辨率640x480;
输出:HDMI,分辨率640x480;
工程作用:FPGA基于 LeNet-5 卷积神经网络实现数字识别;
工程BD如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述

PS 端 SDK 软件设计工程

PS 端 SDK 软件工程代码架构如下:
在这里插入图片描述

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

Zynq7000系列开发板,我用的Zynq7020;
OV7725摄像头;
HDMI显示器;
打印一张0~9的数字的纸张,字体要加粗,可以用我资料包里的文档打印,打印出来如下:
在这里插入图片描述
将显示器中的采集区域对着数字,移动摄像头对准,如下:
在这里插入图片描述

输出静态演示

识别结果如下:
在这里插入图片描述
在这里插入图片描述

输出动态演示

录制了一个小视频,输出动态演示如下:

LeNet-5数字识别

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树首页概览384175 人正在系统学习中
源码技术支持加我微信哦
微信名片
注:本文转载自blog.csdn.net的9527华安的文章"https://blog.csdn.net/qq_41667729/article/details/134968427"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top