目录
- 1、前言
- 2、相关方案推荐
- 3、详细设计方案
- 设计原理框图
- SDI 输入设备
- LMH1219RTWR 均衡器
- UltraScale GTH 高速接口-->解串与串化
- SMPTE UDH-SDI IP核
- BT1120转RGB
- 纯Verilog图像缩放模块详解
- 纯Verilog图像缩放模块使用(重点阅读)
- FDMA 图像缓存
- UDP视频组包发送
- UDP协议栈
- MAC数据缓冲FIFO组
- Tri Mode Ethernet MAC 使用教程
- PHY芯片
- AXI 1G/2.5G Ethernet Subsystem 简介
- AXI 1G/2.5G Ethernet Subsystem 配置
- 多个 AXI 1G/2.5G Ethernet Subsystem 主从级联使用
- SFP光口转RJ45电口
- IP地址、端口号的修改
- UDP视频接收QT上位机
- 工程源码架构
- 4、工程源码1详解-->KU040,RTL8211F做以太网物理层方案
- 5、工程源码2详解-->KU040,1G/2.5G Ethernet 做以太网物理层方案
- 6、工程移植说明
- 7、上板调试验证
- 8、福利:工程代码的获取
UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输,基于UltraScale GTH高速接口,提供2套工程源码和技术支持
1、前言
目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX/GTH/GTY等资源实现解串,利用Xilinx系列FPGA的SMPTE UHD-SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GT高速接口资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。本设计使用UltraScale GTH高速接口资源;
工程概述
本设计基于Xilinx的UltraScale系列FPGA开发板实现SDI视频编解码,输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的LMH1219RTWR芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的UltraScale GTH高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE UHD-SDI IP核进行SDI视频解码操作,并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;
本设计的目的是做图像缩放后再以UDP以太网输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了两种以太网物理层实现方式,一种是FPGA挂载PHY芯片(RTL8211F)方式,另一种FPGA内部GT高速接口实现以太网物理层方式;这两种方式都需要先对解码BT1120视频进行转RGB、图像缩放、图像缓存操作;解码后的SDI视频送入BT1120转RGB模块实现视频格式转换,输出RGB888视频;然后使用自研的、纯verilog实现的、支持任意比例缩放的图像缩放模块实现对输入视频的图像缩放操作,将原始的1920x1080分辨率的SDI视频缩小为1280x720,当然,读者也可以缩放为其他分辨率;然后本博常用的FDMA图像缓存架构实现图像3帧缓存,缓存介质为板载的DDR4;从DDR4读出的视频然后送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的PHY网络芯片实现物理层功能,将RGMII数据转换为差分数据;再经过板载的RJ45网口,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;这是FPGA挂载PHY芯片(RTL8211F)方式;或者MAC数据送入Xilinx官方的AXI 1G/2.5G Ethernet Subsystem IP核实现以太网物理层,并输出差分信号,再通过SFP光口转RJ45电口实现光电转换,用网线传输到电脑端;电脑端使用QT上位机接收UDP网络视频并显示出来;这是FPGA内部GT高速接口实现以太网物理层方式;本博客提供2套工程源码,具体如下:
现对上述2套工程源码做如下解释,方便读者理解:
工程源码1
开发板FPGA型号为Xilinx–>Kintex UltraScale–xcku040-ffva1156-2-i;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的LMH1219RTWR芯片实现单端转差分和均衡EQ后送入FPGA;再经过UltraScale GTH将SDI视频解串为并行数据;再经过SMPTE UHD-SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的、纯verilog实现的、支持任意比例缩放的图像缩放模块实现对输入视频的图像缩放操作,将原始的1920x1080分辨率的SDI视频缩小为1280x720;再经过本博主常用的FDMA图像缓存方案将视频写入DDR4做三帧缓存;从DDR4读出的视频然后送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的Tri Mode Ethernet MAC IP核实现AXIS数据到RGMII数据转换;再经过板载的RTL8211FD网络芯片实现物理层功能,将RGMII数据转换为差分数据,RTL8211FD工作于延时模式,接口为RGMII;再经过板载的RJ45网口,用网线传输到电脑端,输出分辨率为1280x720@60Hz;电脑端使用QT上位机接收UDP网络视频并显示出来;该工程适用于Xilinx的UltraScale高端系列FPGA实现SDI转UDP以太网传输场景,需要FPGA板子有板载PHY芯片;
工程源码2
开发板FPGA型号为Xilinx–>Kintex UltraScale–xcku040-ffva1156-2-i;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的LMH1219RTWR芯片实现单端转差分和均衡EQ后送入FPGA;再经过UltraScale GTH将SDI视频解串为并行数据;再经过SMPTE UHD-SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的、纯verilog实现的、支持任意比例缩放的图像缩放模块实现对输入视频的图像缩放操作,将原始的1920x1080分辨率的SDI视频缩小为1280x720;再经过本博主常用的FDMA图像缓存方案将视频写入DDR4做三帧缓存;从DDR4读出的视频然后送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的AXI 1G/2.5G Ethernet Subsystem IP核实现以太网物理层,并输出差分信号,再通过SFP光口转RJ45电口实现光电转换,用网线传输到电脑端,输出分辨率为1280x720@60Hz;电脑端使用QT上位机接收UDP网络视频并显示出来;该工程适用于Xilinx的UltraScale高端系列FPGA实现SDI转UDP以太网传输场景,需要FPGA板子有板载SFP光口;
本博客详细描述了UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
本博已有的 SDI 编解码方案
我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往
本博已有的以太网方案
目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,对网络通信有需求的兄弟可以去看看,以下是专栏地址:
直接点击前往
本方案在Xilinx–Artix7系列FPGA上的应用
本方案在Xilinx–Artix7系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往
本方案在Xilinx–Kintex7系列FPGA上的应用
本方案在Xilinx–Kintex7系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往
本方案在Xilinx–Zynq7000系列FPGA上的应用
本方案在Xilinx–Zynq7000系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往
3、详细设计方案
设计原理框图
设计原理框图如下:
注意!!!!
注意!!!!
紫色箭头:PHY做以太网物理层方案
绿色箭头:FPGA内部高速接口做以太网物理层方案
本设计参考了Xilinx官方设计文档,官方的参考设计框图如下:
SDI 输入设备
SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
LMH1219RTWR 均衡器
LMH1219RTWR芯片实现单端转差分和均衡EQ的功能,这里选用LMH1219RTWR是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。LMH1219RTWR均衡器原理图如下:
UltraScale GTH 高速接口–>解串与串化
本设计使用Xilinx特有的UltraScale GTH高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,UltraScale GTH起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,UltraScale GTH起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;UltraScale GTH的使用一般需要例化IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得UltraScale GTH具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过UltraScale GTH的rate接口配置此外,为了动态配置UltraScale GTH线速率,还需要UltraScale GTH控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;UltraScale GTH 解串与串化模块代码架构如下:
UltraScale GTH IP核配置如下:
SMPTE UDH-SDI IP核
SMPTE UDH-SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
SMPTE UDH-SDI IP核必须与UltraScale GTH配合才能使用,对于SDI视频接收而言,该IP接收来自于UltraScale GTH的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE UDH-SDI IP IP核代码架构如下:
BT1120转RGB
BT1120转RGB模块的作用是将SMPTE UDH-SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
纯Verilog图像缩放模块详解
本设计的图像缩放模块使用纯Verilog方案,功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
依据上图,图像缩放模块内部核心是例化了4个双口RAM,作用是缓存4行图像,以得到4个临近的像素,以此为基础做线性插值;如果是做图像放大操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中插入更多的像素点来扩大分辨率;如果是做图像缩小操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中删除更多的像素点来缩小分辨率;此外,前面描述的工作是实时的、整幅图像全部扫描式的进行,所以需要对RAM的读写操作进行精准控制;
图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:
FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;
2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:
input wire i_scaler_type //0-->bilinear;1-->neighbor
- 1
通过输入i_scaler_type 的值即可选择;
输入0选择双线性插值算法;
输入1选择邻域插值算法;
代码里的配置如下:
纯Verilog图像缩放模块使用(重点阅读)
图像缩放模块使用非常简单,顶层代码里设置了四个参数,举例如下:
上图是将输入视频分辨率从1280x720缩放为1920x1080;
如果你想将输入视频分辨率从1280x720缩放为640x480;
则只需修改为如下:
再比如你想将输入视频分辨率从1280x720缩放为960x540;
则只需修改为如下:
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;
在本博主这里,想要实现图像缩放,操作就是这么无脑简单,就该两个参数就能搞定貌似高大上的双线性插值图像缩放,这种设计、这种操作、这种工程源码,你还喜欢吗?
FDMA 图像缓存
FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;FDMA图像缓存使用Xilinx vivado的Block Design设计,如下图:
UDP视频组包发送
UDP视频组包发送实现视频数据的组包并通过UDP协议栈发送出去,视频数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,QT上位机接收代码数据帧头定义如下:
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;UDP视频组包发送代码架构如下:
UDP协议栈
本UDP协议栈使用UDP协议栈网表文件,该协议栈目前并不开源,只提供网表文件,虽看不见源码但可正常实现UDP通信,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;协议栈架构如下:
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
本UDP协议栈用户接口接收时序如下:
MAC数据缓冲FIFO组
这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;MAC数据缓冲FIFO组代码架构如下:
Tri Mode Ethernet MAC 使用教程
工程源码1使用Xilinx官方的Tri Mode Ethernet MAC IP核实现以太网物理层的数据接口转换;所以重点讲讲Tri Mode Ethernet MAC这个IP,IP调用如下:
Tri Mode Ethernet MAC并不能直接使用,而是需要配合对应的PHY芯片的RGMII时序图做针对性修改,需要修改IP内部源码,这部分操作比较复杂,我专门写了《Tri Mode Ethernet MAC移植使用教程》文档,并放在了资料包中;
此外,Tri Mode Ethernet MAC还需要AXI4-Lite接口的配置才能工作,工程中如下:
PHY芯片
工程源码1使用PHY芯片实现以太网物理层,用到了RTL8211F,通过这个型号PHY的使用,你将能学会其他型号PHY的使用,因为很多都是兼容的,比如RTL8211兼容YT8531,B50610兼容88E1518等;此外,还提供了PHY的参考原理图,一并放在了资料包中;
AXI 1G/2.5G Ethernet Subsystem 简介
工程源码2使用Xilinx官方的AXI 1G/2.5G Ethernet Subsystem实现以太网物理层;AXI 1G/2.5G Ethernet Subsystem的权威官方手册为《pg138-axi-ethernet》,请自行下载阅读,该IP是Xilinx官方将1G/2.5G Ethernet PCS/PMA or SGMII和Tri Mode Ethernet MAC封装在一起组成的全新IP,目的是简化FPGA实现以太网物理层的设计难度,直接调用这一个IP即可使用,该IP展开后如下:
接收端:
数据首先经过1G/2.5G Ethernet PCS/PMA or SGMII解串,将串行数据解为并行数据;然后经过弹性Buffer做数据缓冲处理,主要是为了去频偏,使板与板之间的数据稳定,然后进行8b/10b解码,恢复正常数据;然后经过PCS接收同步器,对数据进行跨时钟处理,同步到GMII时序下然后输出给Tri Mode Ethernet MAC进行数据合适转换,最后以AXI4-Stream输出;
发送端:
发送端则简单得多,用户侧UDP MAC数据首先给到Tri Mode Ethernet MAC进行数据合适转换,以GMII数据输出给1G/2.5G Ethernet PCS/PMA or SGMII,后者进行以太网物理层处理,以差分信号输出;
AXI 1G/2.5G Ethernet Subsystem 配置
AXI 1G/2.5G Ethernet Subsystem配置为1G,如下:
AXI 1G/2.5G Ethernet Subsystem可运行于1G和2.5G线速率,对GT时钟有严格研究,按照官方数据手册,运行1G线速率时,GT差分时钟必须为125M,运行2.5G线速率时,GT差分时钟必须为312.5M,如下:
多个 AXI 1G/2.5G Ethernet Subsystem 主从级联使用
多个AXI 1G/2.5G Ethernet Subsystem 的主从搭配使用的应用场景是FPGA开发板充当多光口的网卡使用,即一个FPGA挂载多个光口,每一个光口相当于一个独立的网卡,有独立的IP地址和MAC地址,类似于交换机;主从搭配使用框架如下:
AXI 1G/2.5G Ethernet Subsystem可单独使用,当单独使用时,一个AXI 1G/2.5G Ethernet Subsystem单独占用一个GT高速接口资源,单独占用一对差分时钟资源;此时的IP配置如下:
AXI 1G/2.5G Ethernet Subsystem也可多个级联主从搭配使用,主从搭配使用时,一个AXI 1G/2.5G Ethernet Subsystem当做主IP,占用一个GT高速接口资源,单独占用一对差分时钟资源;其他AXI 1G/2.5G Ethernet Subsystem当做从IP,占用一个GT高速接口资源,但不占用差分时钟资源,而是使用主IP提供的参考时钟;此时的从IP配置如下:
SFP光口转RJ45电口
工程源码2需要准备满足千兆传输要求的SFP光口转RJ45电口,某宝二三十块钱很便宜,大概长这样:
IP地址、端口号的修改
UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置在顶层模块如下:
UDP视频接收QT上位机
仅提供Win10版本的QT上位机,位置如下:
以Win10版本为例,源码位置如下:
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
QT上位机运行效果如下:
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述;
工程源码架构
本博客提供2套工程源码,以工程源码1为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计为图像缓存架构的部分:
本博客提供2套工程源码,以工程源码1为例,工程源码架构如下,此为PHY芯片实现以太网物理层方案:
本博客提供2套工程源码,以工程源码2为例,工程源码架构如下,此为Xilinx官方的AXI 1G/2.5G Ethernet Subsystem IP核实现以太网物理层方案:
4、工程源码1详解–>KU040,RTL8211F做以太网物理层方案
开发板FPGA型号:Xilinx-Kintex-UltraScale–xcku040-ffva1156-2-i;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:RJ45-UDP网络视频,分辨率1280x720@60Hz;
SDI视频解串方案:Xilinx–UltraScale GTH高速接口解串;
SDI视频解码方案:Xilinx–SMPTE UHD-SDI 解码;
图像缩放方案:纯verilog代码实现、任意比例缩放的图像缩放模块;
图像缩放用例:1920x1080缩放到1280x720;
缓存方案:FDMA图像缓存+DDR4方案;
以太网物理层方案:RTL8211F
芯片,延时模式,RGMII接口;
FPGA端MAC方案:Xilinx官方Tri Mode Ethernet MAC IP核,固定千兆模式;
以太网传输层协议:UDP协议,千兆速率;
实现功能:UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输;
工程作用:此工程目的是让读者掌握Xilinx UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
5、工程源码2详解–>KU040,1G/2.5G Ethernet 做以太网物理层方案
开发板FPGA型号:Xilinx-Kintex-UltraScale–xcku040-ffva1156-2-i;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:RJ45-UDP网络视频,分辨率1280x720@60Hz;
SDI视频解串方案:Xilinx–UltraScale GTH高速接口解串;
SDI视频解码方案:Xilinx–SMPTE UHD-SDI 解码;
图像缩放方案:纯verilog代码实现、任意比例缩放的图像缩放模块;
图像缩放用例:1920x1080缩放到1280x720;
缓存方案:FDMA图像缓存+DDR4方案;
以太网物理层方案:Xilinx官方的AXI 1G/2.5G Ethernet Subsystem
IP核,固定千兆模式;
以太网传输层协议:UDP协议,千兆速率;
实现功能:UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输;
工程作用:此工程目的是让读者掌握Xilinx UltraScale系列FPGA实现SDI视频编解码+UDP以太网传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
6、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
7、上板调试验证
准备工作
需要准备的器材如下:
FPGA开发板;
SDI摄像头或HDMI转SDI盒子;
网线;
我的开发板了连接如下:
然后将电脑端IP地址设置为如下:
然后下载bit或者固化bin文件,即可开始测试;
ping测试
打开电脑CMD,输入ping指令;
单次ping测试如下:
连续ping测试如下:
ARP测试
打开电脑CMD,输入ARP指令;如下:
QT上位机配置
打开QT上位机配置如下,然后可以采集显示视频;
FPGA实时SDI视频采集转UDP网络视频流输出演示
FPGA实时SDI视频采集转UDP网络视频流输出演示如下:
SDI-UDP
8、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:



评论记录:
回复评论: