首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

GIC介绍

  • 25-03-04 14:01
  • 4592
  • 11491
blog.csdn.net

往期内容

本专栏往期内容,interrtupr子系统:

  1. 深入解析Linux内核中断管理:从IRQ描述符到irq domain的设计与实现
  2. Linux内核中IRQ Domain的结构、操作及映射机制详解
  3. 中断描述符irq_desc成员详解
  4. Linux 内核中断描述符 (irq_desc) 的初始化与动态分配机制详解
  5. 中断的硬件框架

pinctrl和gpio子系统专栏:

  1. 专栏地址:pinctrl和gpio子系统

  2. 编写虚拟的GPIO控制器的驱动程序:和pinctrl的交互使用

    – 末片,有专栏内容观看顺序

input子系统专栏:

  1. 专栏地址:input子系统
  2. input角度:I2C触摸屏驱动分析和编写一个简单的I2C驱动程序
    – 末片,有专栏内容观看顺序

I2C子系统专栏:

  1. 专栏地址:IIC子系统
  2. 具体芯片的IIC控制器驱动程序分析:i2c-imx.c-CSDN博客
    – 末篇,有专栏内容观看顺序

总线和设备树专栏:

  1. 专栏地址:总线和设备树
  2. 设备树与 Linux 内核设备驱动模型的整合-CSDN博客
    – 末篇,有专栏内容观看顺序

img

目录

  • 往期内容
  • 1.结构
  • 2.实例描述
  • 3.配置
  • 4.初始化
  • 5.GCI中断处理

1.结构

RM体系结构定义了通用中断控制器(GIC),该控制器包括一组用于管理单核或多核系统中的中断的硬件资源。GIC提供了内存映射寄存器,可用于管理中断源和行为,以及(在多核系统中)用于将中断路由到各个CPU核。它使软件能够屏蔽,启用和禁用来自各个中断源的中断,以(在硬件中)对各个中断源进行优先级排序和生成软件触发中断。它还提供对TrustZone安全性扩展的支持。GIC接受系统级别中断的产生,并可以发信号通知给它所连接的每个内核,从而有可能导致IRQ或FIQ异常发生。

从软件角度来看,GIC具有两个主要功能模块,简单画图如下:

img

① 分发器(Distributor)

系统中的所有中断源都连接到该单元。可以通过仲裁单元的寄存器来控制各个中断源的属性,例如优先级、状态、安全性、路由信息和使能状态。分发器把中断输出到“CPU接口单元”,后者决定将哪个中断转发给CPU核。

Distributor对中断的控制包括:

(1)中断enable或者disable的控制。Distributor对中断的控制分成两个级别。一个是全局中断的控制(GIC_DIST_CTRL)。一旦disable了全局的中断,那么任何的interrupt
source产生的interrupt event都不会被传递到CPU interface。另外一个级别是对针对各个interrupt
source进行控制(GIC_DIST_ENABLE_CLEAR),disable某一个interrupt
source会导致该interrupt event不会分发到CPU interface,但不影响其他interrupt
source产生interrupt event的分发。

(2)控制将当前优先级最高的中断事件分发到一个或者一组CPU interface。当一个中断事件分发到多个CPU
interface的时候,GIC的内部逻辑应该保证只assert 一个CPU。

(3)优先级控制。

(4)interrupt属性设定。例如是level-sensitive还是edge-triggered

(5)interrupt group的设定

Distributor可以管理若干个interrupt source,这些interrupt
source用ID来标识,我们称之interrupt ID。

② CPU接口单元(CPU Interface)

CPU核通过控制器的CPU接口单元接收中断。CPU接口单元寄存器用于屏蔽,识别和控制转发到CPU核的中断的状态。系统中的每个CPU核心都有一个单独的CPU接口。

CPU interface这个block主要用于和process进行接口。该block的主要功能包括:

(a)enable或者disable CPU interface向连接的CPU assert中断事件。对于ARM,CPU interface
block和CPU之间的中断信号线是nIRQCPU和nFIQCPU。如果disable了中断,那么即便是Distributor分发了一个中断事件到CPU
interface,但是也不会assert指定的nIRQ或者nFIQ通知processor。

(b)ackonwledging中断。processor会向CPU interface
block应答中断(应答当前优先级最高的那个中断),中断一旦被应答,Distributor就会把该中断的状态从pending状态修改成active或者pending
and active(这是和该interrupt
source的信号有关,例如如果是电平中断并且保持了该asserted电平,那么就是pending and
active)。processor ack了中断之后,CPU interface就会deassert nIRQCPU和nFIQCPU信号线。

(c)中断处理完毕的通知。当interrupt handler处理完了一个中断的时候,会向写CPU interface的寄存器从而通知GIC
CPU已经处理完该中断。做这个动作一方面是通知Distributor将中断状态修改为deactive,另外一方面,CPU
interface会priority drop,从而允许其他的pending的interrupt向CPU提交。

(d)设定priority mask。通过priority mask,可以mask掉一些优先级比较低的中断,这些中断不会通知到CPU。

(e)设定preemption的策略

(f)在多个中断事件同时到来的时候,选择一个优先级最高的通知processor

中断在软件中由一个称为中断ID的数字标识。中断ID唯一对应于一个中断源。软件可以使用中断ID来识别中断源并调用相应的处理程序来处理中断。呈现给软件的中断ID由系统设计确定,一般在SOC的数据手册有记录。

  1. 中断可以有多种不同的类型:

① 软件触发中断(SGI,Software Generated Interrupt)

这是由软件通过写入专用仲裁单元的寄存器即软件触发中断寄存器(ICDSGIR)显式生成的。它最常用于CPU核间通信。SGI既可以发给所有的核,也可以发送给系统中选定的一组核心。中断号0-15保留用于SGI的中断号。用于通信的确切中断号由软件决定。

② 私有外设中断(PPI,Private Peripheral Interrupt)

这是由单个CPU核私有的外设生成的。PPI的中断号为16-31。它们标识CPU核私有的中断源,并且独立于另一个内核上的相同中断源,比如,每个核的计时器。

③ 共享外设中断(SPI,Shared Peripheral Interrupt)

这是由外设生成的,中断控制器可以将其路由到多个核。中断号为32-1020。SPI用于从整个系统可访问的各种外围设备发出中断信号。

中断可以是边沿触发的(在中断控制器检测到相关输入的上升沿时认为中断触发,并且一直保持到清除为止)或电平触发(仅在中断控制器的相关输入为高时触发)。

  1. 中断可以处于多种不同状态:

① 非活动状态(Inactive)–这意味着该中断未触发。

②
挂起(Pending)–这意味着中断源已被触发,但正在等待CPU核处理。待处理的中断要通过转发到CPU接口单元,然后再由CPU接口单元转发到内核。

③ 活动(Active)–描述了一个已被内核接收并正在处理的中断。

④ 活动和挂起(Active and pending)–描述了一种情况,其中CPU核正在为中断服务,而GIC又收到来自同一源的中断。

​ 中断的优先级和可接收中断的核都在分发器(distributor)中配置。外设发给分发器的中断将标记为pending状态(或Active and Pending状态,如触发时果状态是active)。distributor确定可以传递给CPU核的优先级最高的pending中断,并将其转发给内核的CPU interface。通过CPU interface,该中断又向CPU核发出信号,此时CPU核将触发FIQ或IRQ异常。

​ 作为响应,CPU核执行异常处理程序。异常处理程序必须从CPU interface寄存器查询中断ID,并开始为中断源提供服务。完成后,处理程序必须写入CPU interface寄存器以报告处理结束。然后CPU interface准备转发distributor发给它的下一个中断。

​ 在处理中断时,中断的状态开始为pending,active,结束时变成inactive。中断状态保存在distributor寄存器中。

下图是GIC控制器的逻辑结构:

img

2.实例描述

img

首先给出前提条件:

(a)N和M用来标识两个外设中断,N的优先级大于M

(b)两个中断都是SPI类型,level trigger,active-high

(c)两个中断被配置为去同一个CPU

(d)都被配置成group 0,通过FIQ触发中断

下面的表格按照时间轴来描述交互过程:

时间交互动作的描述
T0时刻Distributor检测到M这个interrupt source的有效触发电平
T2时刻Distributor将M这个interrupt source的状态设定为pending
T17时刻大约15个clock之后,CPU interface拉低nFIQCPU信号线,向CPU报告M外设的中断请求。这时候,CPU interface的ack寄存器(GICC_IAR)的内容会修改成M interrupt source对应的ID
T42时刻Distributor检测到N这个优先级更高的interrupt source的触发事件
T43时刻Distributor将N这个interrupt source的状态设定为pending。同时,由于N的优先级更高,因此Distributor会标记当前优先级最高的中断
T58时刻大约15个clock之后,CPU interface拉低nFIQCPU信号线,向CPU报告N外设的中断请求。当然,由于T17时刻已经assert CPU了,因此实际的电平信号仍然保持asserted。这时候,CPU interface的ack寄存器(GICC_IAR)的内容会被更新成N interrupt source的ID
T61时刻软件通过读取ack寄存器的内容,获取了当前优先级最高的,并且状态是pending的interrupt ID(也就是N interrupt source对应的ID),通过读该寄存器,CPU也就ack了该interrupt source N。这时候,Distributor将N这个interrupt source的状态设定为pending and active(因为是电平触发,只要外部仍然有asserted的电平信号,那么一定就是pending的,而该中断是正在被CPU处理的中断,因此状态是pending and active) 注意:T61标识CPU开始服务该中断
T64时刻3个clock之后,由于CPU已经ack了中断,因此GIC中CPU interface模块 deassert nFIQCPU信号线,解除发向该CPU的中断请求
T126时刻由于中断服务程序操作了N外设的控制寄存器(ack外设的中断),因此N外设deassert了其interrupt request signal
T128时刻Distributor解除N外设的pending状态,因此N这个interrupt source的状态设定为active
T131时刻软件操作End of Interrupt寄存器(向GICC_EOIR寄存器写入N对应的interrupt ID),标识中断处理结束。Distributor将N这个interrupt source的状态修改为idle 注意:T61~T131是CPU服务N外设中断的的时间区域,这个期间,如果有高优先级的中断pending,会发生中断的抢占(硬件意义的),这时候CPU interface会向CPU assert 新的中断。
T146时刻大约15个clock之后,Distributor向CPU interface报告当前pending且优先级最高的interrupt source,也就是M了。漫长的pending之后,M终于迎来了春天。CPU interface拉低nFIQCPU信号线,向CPU报告M外设的中断请求。这时候,CPU interface的ack寄存器(GICC_IAR)的内容会修改成M interrupt source对应的ID
T211时刻CPU ack M中断(通过读GICC_IAR寄存器),开始处理低优先级的中断。

3.配置

GIC作为内存映射的外围设备,被软件访问。所有内核都可以访问公共的distributor单元,但是CPU interface是备份的,也就是说,每个CPU核都使用相同的地址来访问其专用CPU接口。一个CPU核不可能访问另一个CPU核的CPU接口。

Distributor拥有许多寄存器,可以通过它们配置各个中断的属性。这些可配置属性是:

  • 中断优先级:Distributor使用它来确定接下来将哪个中断转发到CPU接口。
  • 中断配置:这确定中断是对电平触发还是边沿触发。
  • 中断目标:这确定了可以将中断发给哪些CPU核。
  • 中断启用或禁用状态:只有Distributor中启用的那些中断变为挂起状态(pending)时,才有资格转发。
  • 中断安全性:确定将中断分配给Secure还是Normal world软件。
  • 中断状态。Distributor还提供优先级屏蔽,可防止低于某个优先级的中断发送给CPU核。
    每个CPU核上的CPU interface,专注于控制和处理发送给该CPU核的中断。

4.初始化

Distributor和CPU interface在复位时均被禁用。复位后,必须初始化GIC,才能将中断传递给CPU核。

在Distributor中,软件必须配置优先级、目标核、安全性并启用单个中断;随后必须通过其控制寄存器使能。

对于每个CPU interface,软件必须对优先级和抢占设置进行编程。每个CPU接口模块本身必须通过其控制寄存器使能。

在CPU核可以处理中断之前,软件会通过在向量表中设置有效的中断向量并清除CPSR中的中断屏蔽位来让CPU核可以接收中断。

可以通过禁用Distributor单元来禁用系统中的整个中断机制;可以通过禁用单个CPU的CPU接口模块或者在CPSR中设置屏蔽位来禁止向单个CPU核的中断传递。也可以在Distributor中禁用(或启用)单个中断。

为了使某个中断可以触发CPU核,必须将各个中断,Distributor和CPU interface全部使能,并将CPSR中断屏蔽位清零,如下图:

img

5.GCI中断处理

当CPU核接收到中断时,它会跳转到中断向量表执行。

顶层中断处理程序读取CPU接口模块的Interrupt Acknowledge Register,以获取中断ID。除了返回中断ID之外,读取操作还会使该中断在Distributor中标记为active状态。一旦知道了中断ID(标识中断源),顶层处理程序现在就可以分派特定于设备的处理程序来处理中断。

当特定于设备的处理程序完成执行时,顶级处理程序将相同的中断ID写入CPU interface模块中的End of Interrupt register中断结束寄存器,指示中断处理结束。除了把当前中断移除active状态之外,这将使最终中断状态变为inactive或pending(如果状态为inactive and pending),这将使CPU interface能够将更多待处理pending的中断转发给CPU核。这样就结束了单个中断的处理。

同一CPU核上可能有多个中断等待服务,但是CPU interface一次只能发出一个中断信号。顶层中断处理程序重复上述顺序,直到读取特殊的中断ID值1023,表明该内核不再有任何待处理的中断。这个特殊的中断ID被称为伪中断ID(spurious interrupt ID)。

发给CPU核。这样就结束了单个中断的处理。

同一CPU核上可能有多个中断等待服务,但是CPU interface一次只能发出一个中断信号。顶层中断处理程序重复上述顺序,直到读取特殊的中断ID值1023,表明该内核不再有任何待处理的中断。这个特殊的中断ID被称为伪中断ID(spurious interrupt ID)。

伪中断ID是保留值,不能分配给系统中的任何设备。

注:本文转载自blog.csdn.net的憧憬一下的文章"https://blog.csdn.net/caiji0169/article/details/143726592"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top