首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【分类讨论】【割点】1568. 使陆地分离的最少天数

  • 25-02-22 09:00
  • 3931
  • 7618
blog.csdn.net

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

分类讨论
割点原理及封装好的割点类(预计2024年3月11号左右发布)

LeetCode1568. 使陆地分离的最少天数

给你一个大小为 m x n ,由若干 0 和 1 组成的二维网格 grid ,其中 1 表示陆地, 0 表示水。岛屿 由水平方向或竖直方向上相邻的 1 (陆地)连接形成。
如果 恰好只有一座岛屿 ,则认为陆地是 连通的 ;否则,陆地就是 分离的 。
一天内,可以将 任何单个 陆地单元(1)更改为水单元(0)。
返回使陆地分离的最少天数。
示例 1:
输入:grid = [[0,1,1,0],[0,1,1,0],[0,0,0,0]]
在这里插入图片描述

输出:2
解释:至少需要 2 天才能得到分离的陆地。
将陆地 grid[1][1] 和 grid[0][2] 更改为水,得到两个分离的岛屿。
示例 2:
在这里插入图片描述

输入:grid = [[1,1]]
输出:2
解释:如果网格中都是水,也认为是分离的 ([[1,1]] -> [[0,0]]),0 岛屿。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 30
grid[i][j] 为 0 或 1

分类讨论

岛屿数只要不为1都是分离的陆地。
岛屿数 = 连通区域 - 水单元数。
一个岛屿只有一块陆地或两块陆地,无法分割,只能花一天或两天变成0岛屿。
3块陆地的岛屿只需要一天就可以分割。由于是4连接,无法两两相连。
4块陆地的岛屿一定可以两天分离,右上的那块陆地 右边和上边没有连接,最坏的情况把左下的两块陆地消掉,右上的陆地和余下的陆地就成了两个岛屿。

如何查看岛屿数量是否为1

并集查找后,看各陆地的是否是同一连通区域。

如果计算能否一天搞定

枚举各陆地,删除后看能否符合题意。

大致思路

一,岛屿数量是否为1,如果不是返回0.
二,枚举各陆地,删除,如果岛屿数量不为1,返回1。
三,返回2。

割点

一,岛屿数量是否为1,如果不是返回0.
二,如果只有1块或2块陆地,直接陆地数量。
三,如果存在割点,返回1。
四,返回2。

代码

核心代码

class CEnumGridEdge
{
public:
	void Init()
	{
		for (int r = 0; r < m_r; r++)
		{
			for (int c = 0; c < m_c; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
	}
	const int m_r, m_c;
protected:
	CEnumGridEdge(int r, int c) :m_r(r), m_c(c)
	{

	}
	void Move(int preR, int preC, int r, int c)
	{
		if ((r < 0) || (r >= m_r))
		{
			return;
		}
		if ((c < 0) || (c >= m_c))

		{
			return;
		}
		OnEnumEdge(preR, preC, r, c);
	};
	virtual void OnEnumEdge(int preR, int preC, int r, int c) = 0;
};
//割点
class CCutPoint
{
public:
	CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vTime.assign(m_iSize, -1);
		m_vVisitMin.assign(m_iSize, -1);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 != m_vTime[i])
			{
				continue;
			}
			m_iRegionCount++;
			dfs(i, -1, vNeiB);
		}
	}
	int RegionCount()const
	{
		return m_iRegionCount;
	}
	vector<int> CutPoints()const
	{
		return m_vCutPoints;
	}
protected:
	void dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
	{
		auto& curTime = m_vTime[cur];
		auto& visitMin = m_vVisitMin[cur];
		curTime = m_iTime++;
		visitMin = curTime;
		int iMax = -1;
		int iChildNum = 0;
		for (const auto& next : vNeiB[cur])
		{
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vTime[next])
			{
				visitMin = min(visitMin, m_vTime[next]);
				continue;
			}
			iChildNum++;
			dfs(next, cur, vNeiB);
			visitMin = min(visitMin, m_vVisitMin[next]);
			iMax = max(iMax, m_vVisitMin[next]);
		}
		if (-1 == parent)
		{
			if (iChildNum >= 2)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
		else
		{
			if (iMax >= curTime)
			{
				m_vCutPoints.emplace_back(cur);
			}
		}
	}
	vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
	vector<int> m_vVisitMin;// 
	int m_iTime = 0;
	int m_iRegionCount = 0;
	vector<int> m_vCutPoints;
	const int m_iSize;
};


class CNeiBo : public CEnumGridEdge
{
public:
	CNeiBo(const vector<vector<int>>& grid, int r, int c):CEnumGridEdge(r,c), m_iMaskCount(r*c), m_grid(grid)
	{
		m_vNeiBo.resize(m_iMaskCount);
		Init();
	}
	// 通过 CEnumGridEdge 继承
	virtual void OnEnumEdge(int preR, int preC, int r, int c) override
	{
		if (m_grid[preR][preC] && m_grid[r][c])
		{
			const int iMask = m_c * r + c;
			const int iPre = m_c * preR + preC;
			m_vNeiBo[iPre].emplace_back(iMask);
		}
	}
	const int m_iMaskCount;
	vector<vector<int>> m_vNeiBo;
	const vector<vector<int>>& m_grid;
};
class Solution {
public:
	int minDays(vector<vector<int>>& grid) {
		CNeiBo neiBo(grid, grid.size(), grid[0].size());
		CCutPoint cut(neiBo.m_vNeiBo);
		int iZeroCount = 0;
		for (const auto& v : grid)
		{
			iZeroCount += std::count(v.begin(), v.end(), 0);
		}
		if (1 != cut.RegionCount()- iZeroCount)
		{
			return 0;
		}
		if (neiBo.m_iMaskCount - iZeroCount <= 2)
		{
			return neiBo.m_iMaskCount - iZeroCount;
		}
		if (cut.CutPoints().size())
		{
			return 1;
		}
		return 2;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<int>> grid;
	{
		Solution sln;
		grid = { {0,1,1,0},{0,1,1,0},{0,0,0,0} };
		auto res = sln.minDays(grid);
		Assert(2, res);
	}
	
	

	{
		Solution sln;
		grid = { {0},{0} };
		auto res = sln.minDays(grid);
		Assert(0, res);
	}

	{
		Solution sln;
		grid = { {1},{1} ,{1} };
		auto res = sln.minDays(grid);
		Assert(1, res);
	}
		
	{
		Solution sln;
		grid = { {1},{1} };
		auto res = sln.minDays(grid);
		Assert(2, res);
	}
	{
		Solution sln;
		grid = { {1} };
		auto res = sln.minDays(grid);
		Assert(1, res);
	}

	
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

2024年3月9

使用新的割点封装类。

class CNeiBo
{
public:	
	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) 
	{
		vector<vector<int>>  vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
		return vNeiBo;
	}	
	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<std::pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
	{
		vector<vector<int>> vNeiBo(rCount * cCount);
		auto Move = [&](int preR, int preC, int r, int c)
		{
			if ((r < 0) || (r >= rCount))
			{
				return;
			}
			if ((c < 0) || (c >= cCount))

			{
				return;
			}
			if (funVilidCur(preR, preC) && funVilidNext(r, c))
			{
				vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);
			}
		};

		for (int r = 0; r < rCount; r++)
		{
			for (int c = 0; c < cCount; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
		return vNeiBo;
	}
};

//割点
class CCutPoint
{
public:
	CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vNodeToTime.assign(m_iSize, -1);
		m_vCutNewRegion.resize(m_iSize);
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 == m_vNodeToTime[i])
			{
				m_vRegionFirstTime.emplace_back(m_iTime);
				dfs(vNeiB, i, -1);
			}
		}	
	}
	int dfs(const vector<vector<int>>& vNeiB,const int cur, const int parent)
	{
		int iMinTime = m_vNodeToTime[cur] = m_iTime++;
		int iRegionCount = (-1 != parent);
		for (const auto& next : vNeiB[cur])		{
			if (-1  != m_vNodeToTime[next])			{
				iMinTime = min(iMinTime, m_vNodeToTime[next]);
				continue;
			}
			const int childMinTime = dfs(vNeiB, next, cur);
			iMinTime = min(iMinTime, childMinTime);
			if (childMinTime >= m_vNodeToTime[cur])			{
				iRegionCount++;
				m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);
			}
		}
		if (iRegionCount < 2)
		{
			m_vCutNewRegion[cur].clear();
		}
		return iMinTime;
	}
	const int m_iSize;
	const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳
	const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳
	vector<bool> Cut()const { 
		vector<bool> ret;
		for (int i = 0; i < m_iSize; i++)
		{
			ret.emplace_back(m_vCutNewRegion[i].size());
		}
		return ret; }//是否是割点
protected:
	vector<int> m_vNodeToTime;
	vector<int> m_vRegionFirstTime;
	vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域
	int m_iTime = 0;
};

class Solution {
public:
	int minDays(vector<vector<int>>& grid) {
		auto pr = [&](int r, int c) {return grid[r][c] == 1; };
		auto neiBo = CNeiBo::Grid(grid.size(), grid[0].size(), pr, pr);
		CCutPoint cut(neiBo);
		int iZeroCount = 0;
		for (const auto& v : grid)
		{
			iZeroCount += std::count(v.begin(), v.end(), 0);
		}
		if (1 != cut.RegionFirstTime().size() - iZeroCount)
		{
			return 0;
		}
		if (neiBo.size() - iZeroCount <= 2)
		{
			return neiBo.size() - iZeroCount;
		}
		auto vCut = cut.Cut();
		const int iCutCount = std::count(vCut.begin(), vCut.end(), true);
		if (iCutCount)
		{
			return 1;
		}
		return 2;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147

2023年4月版

class Solution {
public:
int minDays(vector& grid) {
m_r = grid.size();
m_c = grid[0].size();
int iTotal = 0;
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (1 == grid[r][c])
{
iTotal++;
}
}
}
if (iTotal < 2)
{
return iTotal;
}
if (iTotal != AnyAUnionNum(grid))
{
return 0;
}
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (0 == grid[r][c])
{
continue;
}
grid[r][c] = 0;
if (iTotal != 1+AnyAUnionNum(grid))
{
return 1;
}
grid[r][c] = 1;
}
}
return 2;
}
int AnyAUnionNum(const vector& grid)
{
int iNum = 0;
for (int r = 0; r < m_r;r++ )
{
for (int c = 0; c < m_c; c++ )
{
if (1 == grid[r][c])
{
return NeiBNum(r, c, grid);
}
}
}
return 0;
}
int NeiBNum(int iR, int iC, const vector& grid)
{
std::unordered_set setRC;
queue> que;
setRC.emplace(iR*100+iC);
que.emplace(iR, iC);
while (que.size())
{
const auto it = que.front();
que.pop();
auto Add = [&](int r,int c)
{
if ((r < 0) || (r >= m_r))
{
return;
}
if ((c < 0) || (c >= m_c))
{
return;
}
if (1 != grid[r][c])
{
return;
}
int iRCMask = 100 * r + c;
if (setRC.count(iRCMask))
{
return;
}
setRC.emplace(iRCMask);
que.emplace(r, c);
};
Add(it.first + 1, it.second);
Add(it.first - 1, it.second);
Add(it.first, it.second + 1);
Add(it.first, it.second - 1);
}
return setRC.size();
}
int m_r, m_c;
vector m_vNeiNum;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览59023 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/136162106"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top