首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【动态规划】【数学】【C++算法】18赛车

  • 25-02-22 08:41
  • 3773
  • 10174
blog.csdn.net

作者推荐

视频算法专题

本文涉及知识点

动态规划 数学

LeetCode818赛车

你的赛车可以从位置 0 开始,并且速度为 +1 ,在一条无限长的数轴上行驶。赛车也可以向负方向行驶。赛车可以按照由加速指令 ‘A’ 和倒车指令 ‘R’ 组成的指令序列自动行驶。
当收到指令 ‘A’ 时,赛车这样行驶:
position += speed
speed *= 2
当收到指令 ‘R’ 时,赛车这样行驶:
如果速度为正数,那么speed = -1
否则 speed = 1
当前所处位置不变。
例如,在执行指令 “AAR” 后,赛车位置变化为 0 --> 1 --> 3 --> 3 ,速度变化为 1 --> 2 --> 4 --> -1 。
给你一个目标位置 target ,返回能到达目标位置的最短指令序列的长度。
示例 1:
输入:target = 3
输出:2
解释:
最短指令序列是 “AA” 。
位置变化 0 --> 1 --> 3 。
示例 2:
输入:target = 6
输出:5
解释:
最短指令序列是 “AAARA” 。
位置变化 0 --> 1 --> 3 --> 7 --> 7 --> 6 。
提示:
1 <= target <= 104

这题太难了,反复看各位大佬的题解。结合自己的思考,总结出适合中国人理解的解法。
由于空格消失,故用_代替。

原理

令S=Ak1RAk2…Rkn 表示dp[x]的最短指令序列,x的取值范围(0,target]。An 代替n个A,n可以为0。定义S1,S2,S4,使得 S == Rk1+S1 S == Rk1R + S2 S == Ak1RAk2R+S4 。dp[x]的含义:当前速度为1,向当前方向行驶x的最短指令序列的长度。
S有如下性质:
一,一定不会以R结尾。假定以R结尾,删除它。距离不变。
二,一定不会以R开头。 否则删除RAk1R ,再在末尾增加 RRAk1或RAk1,指令长度不变或变短。
三,ki的i为奇数,则是正方向;i为偶数,则是反方向。如果x1和x2奇偶性相同,则交换kx1和kx2,行驶的路程不变。对奇数ki按降序排序,对偶数ki按降序排序。
四,x1和x2奇偶性不同。则kx1一定不等于kx2,否则通过性质三,移到最后然后删除。
五,x1和x2奇偶性不同。kx1>=3 ,则kx1一定不等于kx2+1,否则kx1变kx2,kx2变0使得,末尾加RA或RRA。
六,如果ki>=4,则ki顶多出现一次。否则将第一个Aki变成Aki+1,第二个Aki删除,末尾追加RRA或RA。
七,如果ki等于1。则最多出现2次。否则将三个A,变成A2 A0 A0。3个字符变2个字符。
八,如果ki等于2。则最多出现2次。否则将三个AA 变成A^3 A A。6个字符变5个字符。
九,如果ki等于3。则最多出现2次。否则将三个AAA变成,A^4 A^2 A^2。9个字符变8个字符。
十,如果x+1等于2k,则最短指令就是Ak。每一步都是最大加速,最大移动距离。
十一,假定某段指令的k1为x,则此指令的最大行驶距离vMaxDis(x)为(正方向全部选择,负方向全部不选择):
x == 0,最大行驶距离0。
x== 1,2个A最大行驶距离为2。
x== 2,当有两个AA时,不会再有A,故最大行驶距离为6。AA_AA_ A -> AAA 5个字符变3个字符。只能AA A_A 行程5,AA_AA 行程6。
x== 3 当两个AAA存在时,不会存在A或AA,最大行驶距离:14。AAA
AAA_ A => AAAA 7个字符变4个字符 AAA _AAA AA => AAAA A A 8个字符变6个字符。2个AAA的行程是14。其它组合不会超过14。
x==4 1个A
AA …Ax 。和为:Sum i = 1 : x _{i=1}^{:x} i=1:x​(2i-1) = Sum i = 1 : x _{i=1}^{:x} i=1:x​(2i)-x = 2^(x+1)-2- x 。A _AA AAA 做特殊处理,删除A AA _AAA ,加上14,即 - 11+14 , 2^(x+1)-2- x+3= 2(x+1) - x +1
十二,假定某段指令的k1为x,则k2的最大值为vK2Max(k1):
根据性质四,k2一定不等于k1。
根据性质五,如果x>=3,则k2一定不是x-1,也不是x+1。
如果x >= 3,k2>=x+2 无论如何都会让行驶的距离为负
k1行驶的路程-k2行驶的路径+ vMaxDis(k1) = 2k1-2^(k1+2) + 2(k1+1)-k1+1 = -2k1-k1 + 1 路程恒定为负,淘汰。

综上所述:x>=3 k2的最大值为x-2。
k1为0,无意义。
k1为1,k2最大为0;如果k2为1,和k1抵消;如果k2为2,则行驶的总距离一定为负。
k1为2,k2可以为1。h1为2时,最大正方向为6。h2为3的话,负方向至少为7。总行程必定为负。故h2最大为1。
h2一定小于h1。
十三:假定某段指令的k1为x,则最小行驶距离vMinDis(x)(除k1外,正方向全部不选,负方向全选)为
故:vMinDis(x) = 2x-1 - vMaxDis(vK2Max(x))
vMinDis的计算值大于实际值,动态规划时可能会有遗漏造成错误。小于实际值,只会多计算几次,不会造成错误。故为了简化问题:令vMinDis(1)和vMinDis(2)等于0。

实现

初始化时计算vK1,如果vK1[x]记录符合以下条件的k1。vMinDis(k1) <= x 且vMaxDis(k1)>=x。
动态规划的状态表示,则初始速度为1,向当前方向行驶x的最短指令流为dp[x]。动态规划的初始值dp[0]=0。
动态规划的填表顺序:
第一层循环: 从1到大枚举x。
第二层循环:枚举可能k1。
第三层循环: 枚举可能的k2。
动态规划的返回值:dp.back()。
难点 dp[x]的x必须在区间[0,x)

动态规划的转移方程

根据上面的十余条性能,可以淘汰很多指令系列。我们只需要计算dp[x],x取值范围[1,target]如果无法表示此范围的行程,也淘汰掉。
由于是从小到大计算x,转移方程中用到的dp[y] ,y的取值范围必须是[0,x),否则无法保证无后效性。
则 S1 行驶的路程为: x - (2k1-1)
S2 行驶的路程为:y = (2k1-1) - x
如果y == 0 , 直达 dp[x] = k1
如果 y 取值[0,x) dp[x] = k+1 + dp[y] 如果S2有更短的指令,替换S2,则S更短
如果 y >= x , 抛弃,见下面的证明一。
如果y < 0
枚举h2,已证明h2 >=0 且 h2 < h1。
令y1是S4行驶的总路程。
令y1 =x - ( 2k1-1)+ (2k2-1) = x - 2k1+2k2
由于k1 > k2 ,所以 y1 < x
y < 0 ==>> x - 2k1+1 > 0
k2的最小值为0,故2k2的最小值为1 故 y1 > 0 。
由于y1取值范围(0,x) 无法到x,故h3必定存在。
可以这样理解:向前走了一段没到目标,向后走了一段(小于向前的距离,且大于等于0)。必定不会到达目标,也不会回到起点。
dp[y1]对应的指令串就是S4,否则替换S4,S会变短。

证明一:2k1-1 != 2x。
如果两者相等,则直接用S2代码代替S,更短。
证明二:2k1-1 不大于 2
x。
假定2k1-1 > 2x 也就是2k1-1 >= 2x +1 ==>>> 2k1 >= 2*(x+1) ===>>> 2k-1 >= x+1 式子一
以Ak2开头的S2,必须能等于 2k1-1 - x ,
a,k1 >= 4 假设一
根据性质五,h2 <= k1-2
S2的最大路程为:
2(x+1) - x +1
将k1-2 代替x
2k1-1- (k1-2)+1 = 2k1-1-k1+3
假定S2的最大路程能>=y:
2k1-1-k1+3 >= 2k1-1 - x
-k1+3 >= 2k-1 -1 - x
x+4 >= 2k-1 +k1 假设二
式子一和假设一
===>>> 2k-1 +k1 >= x+5 ==>>> 2k-1 +k1 > x+4 ==》 x+4 < 2k-1 +k1 式子二
假设二和式子二矛盾
b:k1 <= 3
k1等于0,总路程小于等于0,无意义。
k1等于1,k2为0。h2 h4 h6是递减的,如果h2为0,则h2 h4 h6…全部为0,也就是没有返程。没有返程意味者k1走的路程 <= x。
k1等于2,k2为1。k1的路程为3,只有当x1=1,才符合3>2*x。x=1的时候,最短距离是A。显然k1不等于2。h2为0同上。
k1等于3,k1的路程为7,只有x等于1 2 3 才符合,最短串分别为 A ARRA(或AARA) AA 。 k1都不为3。

代码

class Solution {
public:
	int racecar(int target) {
		auto K2Max = [](int k1)
		{
			static vector v = { 0,0,1 };
			return k1 >= v.size() ? k1 - 2 : v[k1];
		};
		vector vMaxDis = { 0 } ,vMinDis = { 0 };
		for (int k1 = 1; ; k1++)
		{
			int iMax = (1 << (k1 + 1)) - 2 - k1 ;
			if (1 == k1)
			{
				iMax += 1;
			}
			else if(2 == k1)
			{
				iMax += 4;
			}
			else
			{
				iMax += 11;
			}
			const int iMin = (1 << k1) - 1 - vMaxDis[K2Max(k1)];
			if (iMin > 10000)
			{
				break;
			}
			vMaxDis.emplace_back(iMax);
			vMinDis.emplace_back(iMin);
		}

		vector> vK1(target + 1);
		for (int i = 1; i < vMaxDis.size(); i++)
		{
			for (int x = max(1, vMinDis[i]); x <= min(target, vMaxDis[i]); x++)
			{
				vK1[x].emplace_back(i);
			}
		}
		vector dp(target + 1, 100'000);
		dp[0] = 0;
		for (int x = 1; x <= target; x++)
		{
			for (const auto& k1 : vK1[x])
			{
				const int iRemain = (1 << k1) - 1 - x;
				if ( 0 == iRemain )
				{
					dp[x] = k1;//只有k1
					break;
				}
				if (iRemain > 0)
				{	
					if (iRemain < x)
					{
						dp[x] = min(dp[x], k1 + 1 + dp[iRemain]);//超出部分
					}
					continue;
				}
				for (int k2 = 0; k2 <= K2Max(k1); k2++)
				{
					const int iNewX = x - (1 << k1) + (1 << k2);//iNew为0,有k2无k3
					if (iNewX < 0)
					{
						assert(false);
					}
					else
					{
						dp[x] = min(dp[x], k1 + k2 + 1 + (0 != iNewX) + dp[iNewX]);
					}
				}
			}
		}
		return dp.back();
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	{
		Solution sln;
		vector<int> ans = { 1,4,2,5,7,5,3,6,8,7,10,7,9,6,4,7,9,8,11,12,10,9,12,9,11,13,11,8,10,7,5,8,10,9,12
							,13,11,10,13,15,14,15,13,14,12,11,14,11,13,16,14,17,14,15,13,10,12,14,12,9,11,8,
							6,9,11,10,13,14,12,11,14,16,15,16,14,15,13,12,15,17,16,19,19,18,17,18,16,18,18,17,15,16,14,13,16,13,15,18,16,19
		};
		for (int i = 0; i < 100; i++)
		{
			auto res = sln.racecar(i + 1);
			Assert(res, ans[i]);
		}		
	}
	{
		Solution sln;
		vector<int> ans = { 45, 43, 40, 41, 43, 42, 44, 43, 44, 42, 39, 40, 42, 41, 38, 39, 37, 34, 36, 39, 37, 40, 42, 40, 38, 41, 43
			, 42, 45, 42, 44, 41, 39, 42, 44, 43, 46, 47, 45, 44, 47, 44, 46, 48, 46, 43, 45, 42, 40, 43, 45, 44, 47, 48, 46, 45, 48, 50, 49, 50, 48, 49, 47, 46, 49, 46, 48, 51, 49, 52, 49, 50, 48, 45, 47, 49, 47, 44, 46, 43,
			41, 44, 46, 45, 48, 49, 47, 46, 49, 51, 50, 51, 49, 50, 48, 47, 50, 52, 51, 54 };
		for (int i = 0; i < 100; i++)
		{
			auto res = sln.racecar(10000-i);
			Assert(res, ans[i]);
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

附录:
k1:1 minDis:1 maxDis:2
k1:2 minDis:1 maxDis:8
k1:3 minDis:5 maxDis:22
k1:4 minDis:7 maxDis:37
k1:5 minDis:9 maxDis:68
k1:6 minDis:26 maxDis:131
k1:7 minDis:59 maxDis:258
k1:8 minDis:124 maxDis:513
k1:9 minDis:253 maxDis:1024
k1:10 minDis:510 maxDis:2047
k1:11 minDis:1023 maxDis:4094
k1:12 minDis:2048 maxDis:8189
k1:13 minDis:4097 maxDis:16380
k1:14 minDis:8194 maxDis:32763

2023年1月版

class Solution {
public:
bool AddQue(int(vHasDisSpeed)[41], vector>& qDisSpeed, int iDis, int iSpeed, int iOpeNum)
{
iSpeed += 20;
if ((iDis < 0) || (iDis >= m_target
2 ))
{
return false;
}
if (INT_MAX != vHasDisSpeed[iDis][iSpeed])
{//已经处理
return true;
}
vHasDisSpeed[iDis][iSpeed] = iOpeNum;
qDisSpeed.emplace_back(iDis, iSpeed);
return true;
}
int racecar(int target) {
m_target = target;
int vHasDisSpeedOpeNum[10000 * 2][41] = { INT_MAX };
for (int i = 0; i < sizeof(vHasDisSpeedOpeNum) / sizeof(vHasDisSpeedOpeNum[0]); i++ )
for (int j = 0; j < sizeof(vHasDisSpeedOpeNum[0]) / sizeof(vHasDisSpeedOpeNum[0][0]); j++)
{
vHasDisSpeedOpeNum[i][j] = INT_MAX;
}
vector> qDisSpeed;
AddQue(vHasDisSpeedOpeNum, qDisSpeed, 0, 1, 0);
for (int i = 0; i < qDisSpeed.size();i++ )
{
int iDis = qDisSpeed[i].first;
const int iOpeNum = vHasDisSpeedOpeNum[iDis][qDisSpeed[i].second];
int iSpeedK = qDisSpeed[i].second - 20;
int iSpeed = 1 << (abs(iSpeedK)-1);
if (iSpeedK < 0)
{
iSpeed *= -1;
}
if (iDis + iSpeed == target)
{
return iOpeNum + 1;
}
AddQue(vHasDisSpeedOpeNum, qDisSpeed, iDis + iSpeed, iSpeedK > 0 ? iSpeedK + 1 : iSpeedK - 1, iOpeNum + 1);
AddQue(vHasDisSpeedOpeNum, qDisSpeed, iDis, iSpeedK > 0 ? -1 : 1, iOpeNum + 1);
}
return -1;
}
int m_target;
};

2023年8月版

class Solution {
public:
int racecar(int target) {
if (1 == target)
{
return 1;
}
if (2 == target)
{
return 4;
}
vector dp(target + 1,INT_MAX);
dp[1] = 1;
dp[2] = 4;
int k = 1;
for (int i = 3; i <= target ;i++ )
{
while ((1 << (k + 1)) <= i+1)
{
k++;
}
{
const int first = (1 << k) - 1;
if (first == i)
{
dp[i] = k;
continue;
}
for (int j = 0; j < k; j++)
{
dp[i] = min(dp[i], k + 1 + j + 1+ dp[i - first + (1 << j )-1]);
}
}
{
const int first = (1 << (k+1)) - 1;
dp[i] = min(dp[i], (k + 1) + 1 + dp[first - i]);
}
}
return dp.back();
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/135657282"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top