本文涉及知识点
LeetCode 2842. 统计一个字符串的 k 子序列美丽值最大的数目
给你一个字符串 s 和一个整数 k 。
k 子序列指的是 s 的一个长度为 k 的 子序列 ,且所有字符都是 唯一 的,也就是说每个字符在子序列里只出现过一次。
定义 f© 为字符 c 在 s 中出现的次数。
k 子序列的 美丽值 定义为这个子序列中每一个字符 c 的 f© 之 和 。
比方说,s = “abbbdd” 和 k = 2 ,我们有:
f(‘a’) = 1, f(‘b’) = 3, f(‘d’) = 2
s 的部分 k 子序列为:
“abbbdd” -> “ab” ,美丽值为 f(‘a’) + f(‘b’) = 4
“abbbdd” -> “ad” ,美丽值为 f(‘a’) + f(‘d’) = 3
“abbbdd” -> “bd” ,美丽值为 f(‘b’) + f(‘d’) = 5
请你返回一个整数,表示所有 k 子序列 里面 美丽值 是 最大值 的子序列数目。由于答案可能很大,将结果对 109 + 7 取余后返回。
一个字符串的子序列指的是从原字符串里面删除一些字符(也可能一个字符也不删除),不改变剩下字符顺序连接得到的新字符串。
注意:
f© 指的是字符 c 在字符串 s 的出现次数,不是在 k 子序列里的出现次数。
两个 k 子序列如果有任何一个字符在原字符串中的下标不同,则它们是两个不同的子序列。所以两个不同的 k 子序列可能产生相同的字符串。
示例 1:
输入:s = “bcca”, k = 2
输出:4
解释:s 中我们有 f(‘a’) = 1 ,f(‘b’) = 1 和 f(‘c’) = 2 。
s 的 k 子序列为:
bcca ,美丽值为 f(‘b’) + f(‘c’) = 3
bcca ,美丽值为 f(‘b’) + f(‘c’) = 3
bcca ,美丽值为 f(‘b’) + f(‘a’) = 2
bcca ,美丽值为 f(‘c’) + f(‘a’) = 3
bcca ,美丽值为 f(‘c’) + f(‘a’) = 3
总共有 4 个 k 子序列美丽值为最大值 3 。
所以答案为 4 。
示例 2:
输入:s = “abbcd”, k = 4
输出:2
解释:s 中我们有 f(‘a’) = 1 ,f(‘b’) = 2 ,f(‘c’) = 1 和 f(‘d’) = 1 。
s 的 k 子序列为:
abbcd ,美丽值为 f(‘a’) + f(‘b’) + f(‘c’) + f(‘d’) = 5
abbcd ,美丽值为 f(‘a’) + f(‘b’) + f(‘c’) + f(‘d’) = 5
总共有 2 个 k 子序列美丽值为最大值 5 。
所以答案为 2 。
提示:
1 <= s.length <= 2 * 105
1 <= k <= s.length
s 只包含小写英文字母。
组合数学
一,计算a到z的f值。
二,由大到小排序。
三,大于f[k-1]的字母一定会被选取。等于f[k-1]可能被选取,也可能不被选取。小于f[k-1]的一定不会被选取。如果被选取,选择任意一下标。
结果为:ret1
×
\times
× ret2
r
e
t
1
=
Π
f
[
i
]
>
f
[
k
−
1
]
f
[
i
]
ret1=\Pi_{f[i]>f[k-1]}f[i]
ret1=Πf[i]>f[k−1]f[i]
令有m个数大于f[k-1],有e个数和f[k-1]相等,包括f[k-1]。
r
e
t
2
=
(
e
k
−
m
)
f
[
k
−
1
]
k
−
m
ret2={e \choose k-m}f[k-1]^{k-m}
ret2=(k−me)f[k−1]k−m
代码
核心代码
template<int MOD = 1000000007>
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
C1097Int operator/(const C1097Int& o)const
{
return *this * o.PowNegative1();
}
C1097Int& operator/=(const C1097Int& o)
{
*this /= o.PowNegative1();
return *this;
}
bool operator==(const C1097Int& o)const
{
return m_iData == o.m_iData;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
template<class Result = C1097Int<> >
class CCombination
{
public:
CCombination()
{
m_v.assign(1, vector<Result>(1,1));
}
Result Get(int sel, int total)
{
assert(sel <= total);
while (m_v.size() <= total)
{
int iSize = m_v.size();
m_v.emplace_back(iSize + 1, 1);
for (int i = 1; i < iSize; i++)
{
m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];
}
}
return m_v[total][sel];
}
protected:
vector<vector<Result>> m_v;
};
class Solution {
public:
int countKSubsequencesWithMaxBeauty(string s, int k) {
if (k > 26) { return 0; }
vector<int> f(26);
for (const auto& ch : s) {
f[ch - 'a']++;
}
auto vSort = f;
sort(vSort.begin(), vSort.end(),std::greater<>());
C1097Int<> biRet = 1;
int i = 0;
for (; (i < 26) && (vSort[i] > vSort[k - 1]); i++) {
biRet *= vSort[i];
}
const int hasSel = i;
int iEqualCnt = 0;
for (; (i < 26) && (vSort[i] == vSort[k - 1]); i++) {
iEqualCnt ++;
}
CCombination com;
biRet *= com.Get(k - hasSel, iEqualCnt);
biRet *= C1097Int<>(vSort[k - 1]).pow(k - hasSel);
return biRet.ToInt();
}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。



评论记录:
回复评论: