首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【多数组合 数学 字符串】2514. 统计同位异构字符串数目

  • 25-02-22 05:41
  • 2014
  • 5668
blog.csdn.net

本文涉及知识点

多数组合 数学 字符串

LeetCode2514. 统计同位异构字符串数目

给你一个字符串 s ,它包含一个或者多个单词。单词之间用单个空格 ’ ’ 隔开。
如果字符串 t 中第 i 个单词是 s 中第 i 个单词的一个 排列 ,那么我们称字符串 t 是字符串 s 的同位异构字符串。
比方说,“acb dfe” 是 “abc def” 的同位异构字符串,但是 “def cab” 和 “adc bef” 不是。
请你返回 s 的同位异构字符串的数目,由于答案可能很大,请你将它对 109 + 7 取余 后返回。
示例 1:
输入:s = “too hot”
输出:18
解释:输入字符串的一些同位异构字符串为 “too hot” ,“oot hot” ,“oto toh” ,“too toh” 以及 “too oht” 。
示例 2:
输入:s = “aa”
输出:1
解释:输入字符串只有一个同位异构字符串。
提示:
1 <= s.length <= 105
s 只包含小写英文字母和空格 ’ ’ 。
相邻单词之间由单个空格隔开。

多数组合

每个单词分别求异构词的数量,然后相乘。
求单词的异构词。cnt记录26个字母的出现次数。则异构词的数量:
t o t a l [ x ] = ∑ i : 0 x − 1 c n t [ i ] total[x]=\sum_{i:0}^{x-1}cnt[i] total[x]=∑i:0x−1​cnt[i]
异构词的数量 = Π i : 0 26 C t o t a x [ 26 ] − t o t a l [ i ] c n t [ j ] 异构词的数量=\Pi_{i:0}^{26}C_{totax[26]-total[i]}^{cnt[j]} 异构词的数量=Πi:026​Ctotax[26]−total[i]cnt[j]​
就是每个字符的组合相乘。

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator/(const C1097Int& o)const
	{
		return *this * o.PowNegative1();
	}
	C1097Int& operator/=(const C1097Int& o)
	{
		*this /= o.PowNegative1();
		return *this;
	}
	bool operator==(const C1097Int& o)const
	{
		return m_iData == o.m_iData;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

template<class T >
class CFactorial
{
public:
	CFactorial(int n):m_res(n+1){
		m_res[0] = 1;
		for (int i = 1; i <= n; i++) {
			m_res[i] = m_res[i - 1] * i;
		}
	}	
	T Com(int iSel, int iCanSel) {
		return m_res[iCanSel] / m_res[iSel]/ m_res[iCanSel - iSel];
	}
	T Com(const vector<int>& cnt) {
		T biRet = 1;
		int iCanSel = std::accumulate(cnt.begin(), cnt.end(), 0);
		for (int j = 0; j < cnt.size(); j++) {
			biRet *= Com(cnt[j], iCanSel);
			iCanSel -= cnt[j];
		}
		return biRet;
	}
	vector<T> m_res;
};

class Solution {
public:
	int countAnagrams(string s) {
		CFactorial<C1097Int<>> fac(s.length());
		vector<int> cnt(26);
		s += ' ';
		C1097Int<> biRet = 1;
		for (const auto& ch : s) {
			if (' ' == ch) {
				biRet *= fac.Com(cnt);
				cnt.assign(26, 0);
			}
			else {
				cnt[ch - 'a']++;
			}
		}
		return biRet.ToInt();
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122

代码

template<class T>
void Assert(const T& t1, const T& t2)
{
    assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
    if (v1.size() != v2.size())
    {
        assert(false);
        return;
    }
    for (int i = 0; i < v1.size(); i++)
    {
        Assert(v1[i], v2[i]);
    }

}

int main()
{
	string s;
	{
		Solution sln;
		s = "too hot";
		auto res = sln.countAnagrams(s);
		Assert(18, res);
	}
	{
		Solution sln;
		s = "aa";
		auto res = sln.countAnagrams(s);
		Assert(1, res);
	}
	
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览61211 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/138175362"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top