本文涉及知识点
质因数 数学
LeetCode1808. 好因子的最大数目
给你一个正整数 primeFactors 。你需要构造一个正整数 n ,它满足以下条件:
n 质因数(质因数需要考虑重复的情况)的数目 不超过 primeFactors 个。
n 好因子的数目最大化。如果 n 的一个因子可以被 n 的每一个质因数整除,我们称这个因子是 好因子 。比方说,如果 n = 12 ,那么它的质因数为 [2,2,3] ,那么 6 和 12 是好因子,但 3 和 4 不是。
请你返回 n 的好因子的数目。由于答案可能会很大,请返回答案对 109 + 7 取余 的结果。
请注意,一个质数的定义是大于 1 ,且不能被分解为两个小于该数的自然数相乘。一个数 n 的质因子是将 n 分解为若干个质因子,且它们的乘积为 n 。
示例 1:
输入:primeFactors = 5
输出:6
解释:200 是一个可行的 n 。
它有 5 个质因子:[2,2,2,5,5] ,且有 6 个好因子:[10,20,40,50,100,200] 。
不存在别的 n 有至多 5 个质因子,且同时有更多的好因子。
示例 2:
输入:primeFactors = 8
输出:18
提示:
1 <= primeFactors <= 109
唯一分解定理
令 n = a1b1a2b2
…
\dots
…
a1,b1
…
\dots
…都是质因数,b1,b2
…
\dots
…是对应质因数的数量。
则:y = a1x1a2x2
…
\dots
…
x1
∈
\in
∈[1,b1] x2
∈
\in
∈[1,b2] 都是好因子。
故好因子的数量为:b1*b2
…
\dots
…
显然bi不会大于3,否则拆分成2和bi-2 更优或相等。
显然也不会有3个2,否则拆分3
×
\times
× 3 更优。
除非n 为1,否则b1不会为1。否则任意一个bj相加。
1 == n
%
\%
% 3 , 2个2,其它全部3。
2 == n
%
\%
% 3 ,1个2,其它全部3。
代码
template<int MOD = 1000000007>
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
bool operator==(const C1097Int& o)const
{
return m_iData == o.m_iData;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
class Solution {
public:
int maxNiceDivisors(int primeFactors) {
if (1 == primeFactors) { return 1; };
C1097Int<> biRet = 1;
if (1 == primeFactors % 3) {
biRet *= 4;
primeFactors -= 4;
}
if (2 == primeFactors % 3) {
biRet *= 2;
primeFactors -= 2;
}
biRet *= C1097Int<>(3).pow(primeFactors / 3);
return biRet.ToInt();
}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。



评论记录:
回复评论: