首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【动态规划 区间dp 位运算】3117. 划分数组得到最小的值之和

  • 25-02-22 05:21
  • 4182
  • 7000
blog.csdn.net

本文涉及知识点

动态规划 区间dp 位运算

LeetCode3117. 划分数组得到最小的值之和

给你两个数组 nums 和 andValues,长度分别为 n 和 m。
数组的 值 等于该数组的 最后一个 元素。
你需要将 nums 划分为 m 个 不相交的连续 子数组,对于第 ith 个子数组 [li, ri],子数组元素的按位AND运算结果等于 andValues[i],换句话说,对所有的 1 <= i <= m,nums[li] & nums[li + 1] & … & nums[ri] == andValues[i] ,其中 & 表示按位AND运算符。
返回将 nums 划分为 m 个子数组所能得到的可能的 最小 子数组 值 之和。如果无法完成这样的划分,则返回 -1 。
示例 1:
输入: nums = [1,4,3,3,2], andValues = [0,3,3,2]
输出: 12
解释:
唯一可能的划分方法为:
[1,4] 因为 1 & 4 == 0
[3] 因为单元素子数组的按位 AND 结果就是该元素本身
[3] 因为单元素子数组的按位 AND 结果就是该元素本身
[2] 因为单元素子数组的按位 AND 结果就是该元素本身
这些子数组的值之和为 4 + 3 + 3 + 2 = 12
示例 2:

输入: nums = [2,3,5,7,7,7,5], andValues = [0,7,5]

输出: 17

解释:

划分 nums 的三种方式为:

[[2,3,5],[7,7,7],[5]] 其中子数组的值之和为 5 + 7 + 5 = 17
[[2,3,5,7],[7,7],[5]] 其中子数组的值之和为 7 + 7 + 5 = 19
[[2,3,5,7,7],[7],[5]] 其中子数组的值之和为 7 + 7 + 5 = 19
子数组值之和的最小可能值为 17

示例 3:

输入: nums = [1,2,3,4], andValues = [2]

输出: -1

解释:

整个数组 nums 的按位 AND 结果为 0。由于无法将 nums 划分为单个子数组使得元素的按位 AND 结果为 2,因此返回 -1。
提示:
1 <= n == nums.length <= 104
1 <= m == andValues.length <= min(n, 10)
1 <= nums[i] < 105
0 <= andValues[j] < 105

动态规划的位运算

f(i,j) = & = x : i j \Large\And=_{x:i}^j &=x:ij​
vNext[cur] 记录符合以下条件之一的next:
一,next-1 < cur。
二,f(i,next) ≠ \neq = f(i,next-1)。
iBitCnt = log(max(nums[i]) ≈ \approx ≈ 22 ,显然next的数量不会超过iBitCnt。
如果f(i,j)发生变化,至少一个二进制1变成0。

动态规划

动态规划的状态表示

dp[len][cur] 表示将nums[0…cur]划分为len个区间的最小和。
空间复杂度:O(nm)

动态规划的转移方程

r个区间向r+1个区间转移时:
如果f(cur,next) 等于 andValues[r-1]则:
MinSelf(dp[r+1][x],dp[r][cur-1]+nums[x]) x ∈ [ n e x t , n e x t 的下一个值 ) 这样值设置的时间复杂度是: \in[next,next的下一个值) 这样值设置的时间复杂度是: ∈[next,next的下一个值)这样值设置的时间复杂度是: O ( m × n × i B i t C n t × n ) O(m \times n \times iBitCnt \times n ) O(m×n×iBitCnt×n) ,超时了。
只更新:x = next,其它的用二种方式更新:
如果 (nums[cur]& andValues[r-1]) = andValues[r-1]
则MinSelf(dp[r][cur],dp[r][cur-1])
时间复杂度:$ O ( m × n × i B i t C n t ) O(m \times n \times iBitCnt ) O(m×n×iBitCnt)

动态规划的初始值

枚举第一个区间

动态规范的返回值

dp.back().back()

动态规划的填表顺序

len 从1到m_r-1。
cur从1到m_c-1

代码

核心代码

template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{
	*seft = min(*seft,(ELE) other);
}

template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{
	*seft = max(*seft, other);
}

class Solution {
public:
	int minimumValueSum(vector<int>& nums, vector<int>& andValues) {
		const int iBitCnt = 22;
		m_r = andValues.size();
		m_c = nums.size();
		const int iMax = (1 << iBitCnt) - 1;
		vector<vector<int>> dp(m_r+1,vector<int>(m_c, m_iNotMay));
		int iAnd = iMax;
		for (int i = 0; i < m_c; i++) {
			iAnd &= nums[i];
			if (iAnd == andValues[0]) {
				dp[1][i] = nums[i];
			}
		}
		vector<set<int>> vNext(m_c);
		{
			vector<int> next(iBitCnt, m_c);
			for (int i = nums.size() - 1; i >= 0; i--) {
				vNext[i] = set<int>(next.begin(), next.end());
				vNext[i].emplace(i);
				vNext[i].erase(m_c);
				for (int bit = 0; bit < iBitCnt; bit++)
				{
					bool b = (1 << bit) & nums[i];
					if (!b) {
						next[bit] = i;
					}
				}
			}
		}
		for (int r = 1; r < m_r; r++)
		{
			for (int cur = 1; cur < m_c; cur++)
			{
				int iAdd = iMax;
				for (const auto& next : vNext[cur]) {
					iAdd &= nums[next];
					if (andValues[r] == iAdd) {
						MinSelf(&dp[r + 1][next], dp[r][cur - 1] + nums[next]);
					}
				}
				if ((andValues[r - 1] & nums[cur]) == andValues[r - 1]) {
					MinSelf(&dp[r][cur], dp[r][cur - 1]+nums[cur]-nums[cur-1]);
				}				
			}			
		}
		{
			int r = m_r;
			for (int cur = 1; cur < m_c; cur++)
			{				
				if ((andValues[r - 1] & nums[cur]) == andValues[r - 1]) {
					MinSelf(&dp[r][cur], dp[r][cur - 1] + nums[cur] - nums[cur - 1]);
				}
			}
		}
		const int iRet = dp.back().back();
		return (iRet >= 1'000'000) ? -1 : iRet;
	}
	int m_r,m_c;
	const int m_iNotMay = 1'000'000'000;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{

	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<int>  nums, andValues;
	int k;

	{
		Solution sln;
		nums = { 1, 9, 8, 8 }, andValues = { 1,8 };
		auto res = sln.minimumValueSum(nums, andValues);
		Assert(9, res);
	}
	{
		Solution sln;
		nums = { 1, 3, 2, 4, 7, 5, 3 }, andValues = { 0, 5, 3 };
		auto res = sln.minimumValueSum(nums, andValues);
		Assert(12, res);
	}
	{
		Solution sln;
		nums = { 1, 4, 3, 3, 2 }, andValues = { 0, 3, 3, 2 };
		auto res = sln.minimumValueSum(nums, andValues);
		Assert(12, res);
	}

	//vector  nums = { 3,6,9 };
	//int k;
	//
	//{
	//	Solution sln;
	//	nums = { 3,6,9 }, k = 3;
	//	auto res = sln.findKthSmallest(nums, k);
	//	Assert(9LL, res);
	//}

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览60304 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/137742453"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top