首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【深度优先】【树上倍增 】2846. 边权重均等查询

  • 25-02-22 05:20
  • 2960
  • 9169
blog.csdn.net

本文涉及知识点

深度优先 树上倍增

LeetCode2846. 边权重均等查询

现有一棵由 n 个节点组成的无向树,节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重为 wi 的边。

另给你一个长度为 m 的二维整数数组 queries ,其中 queries[i] = [ai, bi] 。对于每条查询,请你找出使从 ai 到 bi 路径上每条边的权重相等所需的 最小操作次数 。在一次操作中,你可以选择树上的任意一条边,并将其权重更改为任意值。

注意:

查询之间 相互独立 的,这意味着每条新的查询时,树都会回到 初始状态 。
从 ai 到 bi的路径是一个由 不同 节点组成的序列,从节点 ai 开始,到节点 bi 结束,且序列中相邻的两个节点在树中共享一条边。
返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 条查询的答案。

示例 1:
输入:n = 7, edges = [[0,1,1],[1,2,1],[2,3,1],[3,4,2],[4,5,2],[5,6,2]], queries = [[0,3],[3,6],[2,6],[0,6]]
输出:[0,0,1,3]
在这里插入图片描述

解释:第 1 条查询,从节点 0 到节点 3 的路径中的所有边的权重都是 1 。因此,答案为 0 。
第 2 条查询,从节点 3 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 0 。
第 3 条查询,将边 [2,3] 的权重变更为 2 。在这次操作之后,从节点 2 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 1 。
第 4 条查询,将边 [0,1]、[1,2]、[2,3] 的权重变更为 2 。在这次操作之后,从节点 0 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。
示例 2:
在这里插入图片描述

输入:n = 8, edges = [[1,2,6],[1,3,4],[2,4,6],[2,5,3],[3,6,6],[3,0,8],[7,0,2]], queries = [[4,6],[0,4],[6,5],[7,4]]
输出:[1,2,2,3]
解释:第 1 条查询,将边 [1,3] 的权重变更为 6 。在这次操作之后,从节点 4 到节点 6 的路径中的所有边的权重都是 6 。因此,答案为 1 。
第 2 条查询,将边 [0,3]、[3,1] 的权重变更为 6 。在这次操作之后,从节点 0 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 3 条查询,将边 [1,3]、[5,2] 的权重变更为 6 。在这次操作之后,从节点 6 到节点 5 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 4 条查询,将边 [0,7]、[0,3]、[1,3] 的权重变更为 6 。在这次操作之后,从节点 7 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。

提示:

1 <= n <= 104
edges.length == n - 1
edges[i].length == 3
0 <= ui, vi < n
1 <= wi <= 26
生成的输入满足 edges 表示一棵有效的树
1 <= queries.length == m <= 2 * 104
queries[i].length == 2
0 <= ai, bi < n

树上倍增

先利用DFS获得树上各节点父节点和深度(我以前喜欢称为级别),然后在次的基础上利用树上倍增求最近公共祖先。
pubtree[j] 的vSum[i][x] 记录 x和 2i-1个最近祖先 中 权重为j的数量。

代码

核心代码

class CNeiBo
{
public:	
	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) 
	{
		vector<vector<int>>  vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
		return vNeiBo;
	}	
	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<std::pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
	{
		vector<vector<int>> vNeiBo(rCount * cCount);
		auto Move = [&](int preR, int preC, int r, int c)
		{
			if ((r < 0) || (r >= rCount))
			{
				return;
			}
			if ((c < 0) || (c >= cCount))

			{
				return;
			}
			if (funVilidCur(preR, preC) && funVilidNext(r, c))
			{
				vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);
			}
		};

		for (int r = 0; r < rCount; r++)
		{
			for (int c = 0; c < cCount; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
	{
		vector<vector<int>> neiBo(neiBoMat.size());
		for (int i = 0; i < neiBoMat.size(); i++)
		{
			for (int j = i + 1; j < neiBoMat.size(); j++)
			{
				if (neiBoMat[i][j])
				{
					neiBo[i].emplace_back(j);
					neiBo[j].emplace_back(i);
				}
			}
		}
		return neiBo;
	}
};

class CParents
{
public:
	CParents(vector<int>& vParent, const int iMaxDepth)
	{	
		int iBitNum = 0;
		for (; (1 << iBitNum) < iMaxDepth; iBitNum++);
		const int n = vParent.size();
		m_vParents.assign(iBitNum+1, vector<int>(n, -1));
		m_vParents[0] = vParent;
		//树上倍增
		for (int i = 1; i < m_vParents.size(); i++)
		{
			for (int j = 0; j < n; j++)
			{
				const int iPre = m_vParents[i - 1][j];
				if (-1 != iPre)
				{
					m_vParents[i][j] = m_vParents[i - 1][iPre];
				}
			}
		}
	}
	int GetParent(int iNode, int iDepth)const
	{
		int iParent = iNode;
		for (int iBit = 0; iBit < m_vParents.size(); iBit++)
		{
			if (-1 == iParent)
			{
				return iParent;
			}
			if (iDepth & (1 << iBit))
			{
				iParent = m_vParents[iBit][iParent];
			}
		}
		return iParent;
	}	
protected:
	vector<vector<int>> m_vParents;
};

class C2Parents : public CParents
{
public:
	C2Parents(vector<int>& vParent, const vector<int>& vDepth) :m_vDepth(vDepth)
		, CParents(vParent,*std::max_element(vDepth.begin(), vDepth.end()))
	{		
	}	
	int GetPublicParent(int iNode1, int iNode2)const
	{
		int leve0 = m_vDepth[iNode1];
		int leve1 = m_vDepth[iNode2];
		if (leve0 < leve1)
		{
			iNode2 = GetParent(iNode2, leve1 - leve0);
			leve1 = leve0;
		}
		else
		{
			iNode1 = GetParent(iNode1, leve0 - leve1);
			leve0 = leve1;
		}
		//二分查找
		int left = -1, r = leve0;
		while (r - left > 1)
		{
			const auto mid = left + (r - left) / 2;
			const int iParent0 = GetParent(iNode1, mid);
			const int iParent1 = GetParent(iNode2, mid);
			if (iParent0 == iParent1)
			{
				r = mid;
			}
			else
			{
				left = mid;
			}
		}
		return GetParent(iNode1, r);
	}
protected:

	vector<vector<int>> m_vParents;
	const vector<int> m_vDepth;
};

class CPubSum
{
public:
	CPubSum(vector<int>& vQual, CParents& calPar, const int iQua,const int iMaxDepth):m_calPar(calPar)
	{
		int iBitNum = 0;
		for (; (1 << iBitNum) < iMaxDepth; iBitNum++);
		m_vSum.assign(iBitNum + 1, vector<int>(vQual.size()));
		for (int i = 0; i < vQual.size(); i++)
		{
			m_vSum[0][i] = (iQua == vQual[i]);
		}
		for (int iBit = 1; iBit < m_vSum.size(); iBit++)
		{
			for (int i = 0; i < vQual.size(); i++)
			{
				const int next = calPar.GetParent(i, 1 << (iBit - 1));
				if (-1 == next)
				{
					continue;
				}
				m_vSum[iBit][i] = m_vSum[iBit - 1][i] + m_vSum[iBit - 1][next];
			}
		}
	}
	int Sum(int cur ,int cnt)
	{
		int iRet = 0;
		for (int iBit = 0; iBit < m_vSum.size(); iBit++)
		{
			if ((1 << iBit) & cnt)
			{
				iRet += m_vSum[iBit][cur];
				cur = m_calPar.GetParent(cur, 1 << iBit);
			}
		}
		return iRet;
	}
	vector<vector<int>> m_vSum;
	CParents& m_calPar;
};
class Solution {
public:
	vector<int> minOperationsQueries(int n, vector<vector<int>>& edges, vector<vector<int>>& queries) {
		m_vDepth.resize(n);
		m_vParent.resize(n);
		m_vQual.resize(n);
		auto vNeiBo = CNeiBo::Three(n, edges, false);	
		DFS(0, -1, vNeiBo, 0);
		C2Parents pubParent(m_vParent, m_vDepth);
		vector<CPubSum*> vPubSum;
		const int iMaxDepth = *std::max_element(m_vDepth.begin(), m_vDepth.end());
		for (int i = 1; i <= 26; i++)
		{
			vPubSum.emplace_back(new CPubSum(m_vQual, pubParent, i, iMaxDepth));
		}
		vector<int> vRet;
		for (const auto& v : queries)
		{
			int pub = pubParent.GetPublicParent(v[0], v[1]);	
			int iMin = INT_MAX;
			for (int i = 0; i < 26; i++)
			{
				int iCnt1 = m_vDepth[v[0]] - m_vDepth[pub];
				int iCnt2 = m_vDepth[v[1]] - m_vDepth[pub];	
				const int cur = iCnt1 + iCnt2 -vPubSum[i]->Sum(v[0], iCnt1) - vPubSum[i]->Sum(v[1], iCnt2) ;
				iMin = min(iMin, cur);
			}
			vRet.emplace_back(iMin);
		}
		return vRet;
	}
	void DFS(int cur, int par, vector < vector<pair<int, int>>>& vNeiBo,int iQua)
	{
		m_vParent[cur] = par;
		m_vDepth[cur] = (-1 == par) ? 0 : (m_vDepth[par] + 1);
		m_vQual[cur] = iQua;
		for (const auto& [next, qua] : vNeiBo[cur])
		{
			if (next == par)
			{
				continue;
			}
			DFS(next, cur, vNeiBo, qua);
		}
	}
	vector<int> m_vDepth, m_vParent, m_vQual;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	int n;
	vector<vector<int>> edges, queries;
	{
		Solution sln;
		n = 7, edges = { {0,1,1},{1,2,1},{2,3,1},{3,4,2},{4,5,2},{5,6,2} }, queries = { {0,3},{3,6},{2,6},{0,6} };
		auto res = sln.minOperationsQueries(n, edges, queries);
		Assert({ 0,0,1,3 }, res);
	}
	{
		Solution sln;
		n = 8, edges = { {1,2,6},{1,3,4},{2,4,6},{2,5,3},{3,6,6},{3,0,8},{7,0,2} }, queries = { {4,6},{0,4},{6,5},{7,4} };
		auto res = sln.minOperationsQueries(n, edges, queries);
		Assert({ 1,2,2,3 }, res);
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

2023年9月版

class CParents
{
public:
CParents(int n,vector& vParent)
{
m_vParents.assign(16, vector(n, -1));
m_vParents[0] = vParent;
//树上倍增
for (int i = 1; i < m_vParents.size(); i++)
{
for (int j = 0; j < n; j++)
{
const int iPre = m_vParents[i - 1][j];
if (-1 != iPre)
{
m_vParents[i][j] = m_vParents[i - 1][iPre];
}
}
}
}
int GetParent(int iNode, int iLeve)
{
int iParent = iNode;
for (int iBit = 0; iBit < 16; iBit++)
{
if (-1 == iParent)
{
return iParent;
}
if (iLeve & (1 << iBit))
{
iParent = m_vParents[iBit][iParent];
}
}
return iParent;
}
protected:
vector m_vParents;
};
class Solution {
public:
vector minOperationsQueries(int n, vector& edges, vector& queries) {
//计算各查询的公共祖先=》路径
m_vLeve.assign(n,0);
m_vParent.assign(n, -1);
vParentNums.assign(n, vector(27));
CNeiBo3 neiBo(n,edges,false,0);
DFSLeveAndParen(0, -1, 0,0, neiBo.m_vNeiB);
CParents pars(n, m_vParent);
vector vRes;
for ( int i = 0 ; i < queries.size(); i++ )
{
const auto que = queries[i];
const int iPar = GetQueParent(pars, que);
int iMax = 0;
for (int i = 1; i <= 26; i++)
{
int tmp = vParentNums[que[0]][i] + vParentNums[que[1]][i] - vParentNums[iPar][i]2;
iMax = max(iMax, tmp);
}
int iEdgeNum = m_vLeve[que[0]] + m_vLeve[que[1]]-2
m_vLeve[iPar];
vRes.emplace_back(iEdgeNum - iMax);
}
return vRes;
}
int GetQueParent(CParents& pars,vector que)
{
int leve0 = m_vLeve[que[0]];
int leve1 = m_vLeve[que[1]];
if (leve0 < leve1)
{
que[1] = pars.GetParent(que[1], leve1 - leve0);
leve1 = leve0;
}
else
{
que[0] = pars.GetParent(que[0], leve0 - leve1);
leve0 = leve1;
}
//二分查找
int left = -1, r = leve0;
while (r - left > 1)
{
const auto mid = left + (r - left) / 2;
const int iParent0 = pars.GetParent(que[0], mid);
const int iParent1 = pars.GetParent(que[1], mid);
if (iParent0 == iParent1)
{
r = mid;
}
else
{
left = mid;
}
}
return pars.GetParent(que[0],r);
}
void DFSLeveAndParen(int cur, int iParent,int iW,int leve, const vector>>& neiBo)
{
m_vParent[cur] = iParent;
m_vLeve[cur] = leve;
if (-1 != iParent)
{
vParentNums[cur] = vParentNums[iParent];
}
vParentNums[cur][iW]++;
for (const auto& [next, w] : neiBo[cur])
{
if (next == iParent)
{
continue;
}
DFSLeveAndParen(next, cur,w, leve + 1, neiBo);
}
}
vector m_vNeiBo;
vector m_vLeve;
vector m_vParent;
vector vParentNums;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览60496 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/136971580"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top