首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【单源最短路 图论】882. 细分图中的可到达节点

  • 25-02-22 05:20
  • 3348
  • 11314
blog.csdn.net

作者推荐

视频算法专题

本文涉及知识点

单源最短路 图论

LeetCode 882. 细分图中的可到达节点

给你一个无向图(原始图),图中有 n 个节点,编号从 0 到 n - 1 。你决定将图中的每条边 细分 为一条节点链,每条边之间的新节点数各不相同。
图用由边组成的二维数组 edges 表示,其中 edges[i] = [ui, vi, cnti] 表示原始图中节点 ui 和 vi 之间存在一条边,cnti 是将边 细分 后的新节点总数。注意,cnti == 0 表示边不可细分。
要 细分 边 [ui, vi] ,需要将其替换为 (cnti + 1) 条新边,和 cnti 个新节点。新节点为 x1, x2, …, xcnti ,新边为 [ui, x1], [x1, x2], [x2, x3], …, [xcnti-1, xcnti], [xcnti, vi] 。
现在得到一个 新的细分图 ,请你计算从节点 0 出发,可以到达多少个节点?如果节点间距离是 maxMoves 或更少,则视为 可以到达 。
给你原始图和 maxMoves ,返回 新的细分图中从节点 0 出发 可到达的节点数 。

示例 1:
在这里插入图片描述

输入:edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
输出:13
解释:边的细分情况如上图所示。
可以到达的节点已经用黄色标注出来。
示例 2:

输入:edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4
输出:23
示例 3:

输入:edges = [[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5
输出:1
解释:节点 0 与图的其余部分没有连通,所以只有节点 0 可以到达。

提示:

0 <= edges.length <= min(n * (n - 1) / 2, 104)
edges[i].length == 3
0 <= ui < vi < n
图中 不存在平行边
0 <= cnti <= 104
0 <= maxMoves <= 109
1 <= n <= 3000

单源最短路

朴素单源最短路的时间复杂度是:O(nn),本文是就是:O(9e6),很可能超时。
堆优化单源最短路的时间复杂度:O(边数),边数不超过104。
节点分两种:原始节点、细分节点。
原始节点到0的距离 <= maxMoves,则能到达。
细分点:枚举各边的两个端点,如果端点能到达,且距离为dis,则通过此端点能够到达 maxMoves - dis 个细分点。
同一条边的两个端点到达的细分点需要去重。

代码

核心代码

//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:
	CHeapDis(int n,long long llEmpty = LLONG_MAX/10):m_llEmpty(llEmpty)
	{
		m_vDis.assign(n, m_llEmpty);
	}
	void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
	{
		std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;
		minHeap.emplace(0, start);
		while (minHeap.size())
		{
			const long long llDist = minHeap.top().first;
			const int iCur = minHeap.top().second;
			minHeap.pop();
			if (m_llEmpty != m_vDis[iCur])
			{
				continue;
			}
			m_vDis[iCur] = llDist;
			for (const auto& it : vNeiB[iCur])
			{
				minHeap.emplace(llDist + it.second, it.first);
			}
		}
	}
	vector<long long> m_vDis;
	const long long m_llEmpty;
};

class Solution {
public:
	int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {
		vector<vector<pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges) {
			vNeiBo[v[0]].emplace_back(std::make_pair( v[1],v[2]+1 ));
			vNeiBo[v[1]].emplace_back(std::make_pair(v[0], v[2] + 1));
		}
		CHeapDis dis(n);
		dis.Cal(0, vNeiBo);
		int iRet = 0;
		for (int i = 0; i < n; i++) {
			iRet += (dis.m_vDis[i] <= maxMoves);
		}
		for (const auto& v : edges) {
			int i0 = (int)max(0LL, maxMoves - dis.m_vDis[v[0]]);
			int i1 = (int)max(0LL, maxMoves - dis.m_vDis[v[1]]);
			iRet += min(v[2], i0 + i1);
		}
		return iRet;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<int>> edges;
	int maxMoves, n;
	{
		edges = { {1,2,4},{1,4,5},{1,3,1},{2,3,4},{3,4,5} }, maxMoves = 17, n = 5;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(1, res);
	}
	{
		edges = { {0,1,10},{0,2,1},{1,2,2} }, maxMoves = 6, n = 3;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(13, res);
	}
	{
		edges = { {0,1,4},{1,2,6},{0,2,8},{1,3,1} }, maxMoves = 10, n = 4;
		auto res = Solution().reachableNodes(edges, maxMoves, n);
		Assert(23, res);
	}
	
	

	//CConsole::Out(res);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览60004 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/137154237"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top