首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C++二分查找或并集查找:2948交换得到字典序最小的数组

  • 25-02-22 05:02
  • 3938
  • 14050
blog.csdn.net

本文涉及的基础知识点

二分查找算法合集

LeetCode2948交换得到字典序最小的数组

给你一个下标从 0 开始的 正整数 数组 nums 和一个 正整数 limit 。
在一次操作中,你可以选择任意两个下标 i 和 j,如果 满足 |nums[i] - nums[j]| <= limit ,则交换 nums[i] 和 nums[j] 。
返回执行任意次操作后能得到的 字典序最小的数组 。
如果在数组 a 和数组 b 第一个不同的位置上,数组 a 中的对应字符比数组 b 中的对应字符的字典序更小,则认为数组 a 就比数组 b 字典序更小。例如,数组 [2,10,3] 比数组 [10,2,3] 字典序更小,下标 0 处是两个数组第一个不同的位置,且 2 < 10 。
示例 1:
输入:nums = [1,5,3,9,8], limit = 2
输出:[1,3,5,8,9]
解释:执行 2 次操作:

  • 交换 nums[1] 和 nums[2] 。数组变为 [1,3,5,9,8] 。
  • 交换 nums[3] 和 nums[4] 。数组变为 [1,3,5,8,9] 。
    即便执行更多次操作,也无法得到字典序更小的数组。
    注意,执行不同的操作也可能会得到相同的结果。
    示例 2:
    输入:nums = [1,7,6,18,2,1], limit = 3
    输出:[1,6,7,18,1,2]
    解释:执行 3 次操作:
  • 交换 nums[1] 和 nums[2] 。数组变为 [1,6,7,18,2,1] 。
  • 交换 nums[0] 和 nums[4] 。数组变为 [2,6,7,18,1,1] 。
  • 交换 nums[0] 和 nums[5] 。数组变为 [1,6,7,18,1,2] 。
    即便执行更多次操作,也无法得到字典序更小的数组。
    示例 3:
    输入:nums = [1,7,28,19,10], limit = 3
    输出:[1,7,28,19,10]
    解释:[1,7,28,19,10] 是字典序最小的数组,因为不管怎么选择下标都无法执行操作。
    参数范围:
    1 <= nums.length <= 105
    1 <= nums[i] <= 109
    1 <= limit <= 109

分析

时间复杂度

O(nlogn),枚举每个元素,每个枚举都需要二分查找。

代码

分析

setValue是nums按降序排序,如果一个数x1能替换比它大的数,那么一定存在一个比它大的数x2,且x2-x1 <= limit。setNot记录所有不存在x2的x1。
求一个数x能不替换成的最小数y:
在setValue中,y在x的右边。
setNot中 y在setNot.upper_bound(n)的左边

核心代码

class Solution {
public:
	vector<int> lexicographicallySmallestArray(vector<int>& nums, int limit) {
		std::multiset<int,std::greater<>> setValue(nums.begin(), nums.end());
		std::set<int, std::greater<>> setNot;
		for ( auto it = setValue.begin(); it != setValue.end(); ++it )
		{
			 auto itNext = std::next(it);
			 if ((setValue.end() != itNext) && (*it - *itNext > limit))
			 {
				 setNot.emplace(*itNext);
			 }
		}
		for ( auto& n : nums)
		{
			auto it = setNot.upper_bound(n);
			int iEnd = (setNot.end() == it) ? -1 : *it;
			auto it2 = setValue.lower_bound(iEnd);
			if( setValue.begin() != it2 )			
			{
				n = *std::prev(it2);
				setValue.erase(setValue.find(n));
				continue;
			}
			setValue.erase(setValue.find(n));
			auto ij = setValue.lower_bound(n);
			if ((setValue.end() != ij) && (setValue.begin() != ij))
			{
				if (*std::prev(ij) - *ij > limit)
				{
					setNot.emplace(*ij);
				}
			}
		}
		return nums;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}

int main()
{
vector nums, res;
int limit;
{
nums = { 1, 5, 3, 9, 8 };
limit = 2;
Solution slu;
res = slu.lexicographicallySmallestArray(nums, limit);
Assert(res, vector{1, 3, 5, 8, 9});
}
{
nums = { 1, 7, 6, 18, 2, 1 };
limit = 3;
Solution slu;
res = slu.lexicographicallySmallestArray(nums, limit);
Assert(res, vector{1, 6, 7, 18, 1, 2});
}
{
nums = { 1, 7, 28, 19, 10 };
limit = 3;
Solution slu;
res = slu.lexicographicallySmallestArray(nums, limit);
Assert(res, vector{1, 7, 28, 19, 10});
}

//CConsole::Out(res);
  • 1

}

并集查找

周赛时,没想到并集查找,用自己想的办法,每个细节都需要斟酌、尝试,非常花时间。建议尽量用现有算法。

分析

规则一:如果a,b能交换,b,c能交换,则a,b,c可以交换。

a b c
b a c
c a b
c b a

规则二:如果a b c能互换,c d 能互换,则a 和d 能互换。

a b c d
**c b a ** d
d b a c
d b c a

规则一,a b ,b c => 可以调整成任何顺序
规则二: a b,b c ,c d=>可以调整成任何顺序
规则三:增加a e可以互换

a ??? e
e ??? a
根据规则二,???a 可以换成任意顺序

总结

利用图论知识,a b能互换则a b连通,利用并集查找解决问题。同一个并集查找升序排序。

代码

class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount–;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}
bool IsConnect(int iNode1, int iNode2)
{
return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
return m_iConnetRegionCount;
}
vector GetNodeCountOfRegion()//各联通区域的节点数量
{
const int iNodeSize = m_vNodeToRegion.size();
vector vRet(iNodeSize);
for (int i = 0; i < iNodeSize; i++)
{
vRet[GetConnectRegionIndex(i)]++;
}
return vRet;
}
std::unordered_map GetNodeOfRegion()
{
std::unordered_map ret;
const int iNodeSize = m_vNodeToRegion.size();
for (int i = 0; i < iNodeSize; i++)
{
ret[GetConnectRegionIndex(i)].emplace_back(i);
}
return ret;
}
private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};

class Solution {
public:
vector lexicographicallySmallestArray(vector& nums, int limit) {
m_c = nums.size();
auto vSort = nums;
sort(vSort.begin(), vSort.end());
CUnionFind uf(m_c);
for (int i = m_c - 1; i > 0; i–)
{
if (vSort[i] - vSort[i - 1] <= limit)
{
uf.Union(i, i - 1);
}
}
unordered_map mValueToRegion;
unordered_map mReginToValues;
for (int i = 0; i < m_c; i++)
{
const int iRegion = uf.GetConnectRegionIndex(i);
mValueToRegion[vSort[i]] = iRegion;
mReginToValues[iRegion].emplace_back(vSort[i]);
}
for ( auto& [region, v] : mReginToValues)
{
std::sort(v.begin(), v.end(), std::greater<>());
}
for (int i = 0; i < m_c; i++)
{
const int iRegion = mValueToRegion[nums[i]];
nums[i] = mReginToValues[iRegion].back();
mReginToValues[iRegion].pop_back();
}
return nums;
}
int m_c;
};

优化

各连通区域是连续的,所以直接处理更简单。mValueToRegion[i] 记录第i个连通区域的数。比如:limit是4
14 12 8 3 1 ,可以分成{14 12 8} {3 1}.

代码

class Solution {
public:
vector lexicographicallySmallestArray(vector& nums, int limit) {
m_c = nums.size();
auto vSort = nums;
sort(vSort.begin(), vSort.end());
vector vGroupNum;
unordered_map mValueToRegion;
for (int i = 0 ; i < m_c ; i++ )
{
if ((0 == i) || (vSort[i] - vSort[i - 1] > limit))
{
vGroupNum.emplace_back();
}
vGroupNum.back().emplace_back(vSort[i]);
mValueToRegion[vSort[i]] = vGroupNum.size() - 1;
}
for (auto& v : vGroupNum)
{
std::sort(v.begin(), v.end(), std::greater<>());
}
for (int i = 0; i < m_c; i++)
{
const int iRegion = mValueToRegion[nums[i]];
nums[i] = vGroupNum[iRegion].back();
vGroupNum[iRegion].pop_back();
}
return nums;
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览60496 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/134627440"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top