作者推荐
涉及知识点
广度优先搜索 网格 割点 并集查找
LeetCode:1263. 推箱子
「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 ‘B’ 移动到目标位置 ‘T’ :
玩家用字符 ‘S’ 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。
地板用字符 ‘.’ 表示,意味着可以自由行走。
墙用字符 ‘#’ 表示,意味着障碍物,不能通行。
箱子仅有一个,用字符 ‘B’ 表示。相应地,网格上有一个目标位置 ‘T’。
玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。
玩家无法越过箱子。
返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1。
示例 1:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“.”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:3
解释:我们只需要返回推箱子的次数。
示例 2:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“#”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:-1
示例 3:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“.”,“.”,“#”,“#”],
[“#”,“.”,“#”,“B”,“.”,“#”],
[“#”,“.”,“.”,“.”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:5
解释:向下、向左、向左、向上再向上。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 20
grid 仅包含字符 ‘.’, ‘#’, ‘S’ , ‘T’, 以及 ‘B’。
grid 中 ‘S’, ‘B’ 和 ‘T’ 各只能出现一个。
01广度优先搜索
状态:箱子所在行列,人所在行列
人试图向上下左右移动。以左移为例。
{
如果人可以左移,人左移,加到队首
箱子不在左边
如果人和箱子都可以左移,人箱子左移,加到队尾
箱子在人左边
{如果人可以左移,人左移,加到队首箱子不在左边如果人和箱子都可以左移,人箱子左移,加到队尾箱子在人左边
妙在无需考虑: 箱子对人的影响。
代码
核心代码
class CBFS
{
public:
CBFS(int iStatuCount, int iInit = -1):m_iStatuCount(iStatuCount),m_iInit(iInit)
{
m_res.assign(iStatuCount, iInit);
}
bool Peek(int& statu)
{
if (m_que.empty())
{
return false;
}
statu = m_que.front();
m_que.pop_front();
return true;
}
void PushBack(int statu, int value)
{
if (m_iInit != m_res[statu])
{
return;
}
m_res[statu] = value;
m_que.push_back(statu);
}
void PushFront(int statu, int value)
{
if (m_iInit != m_res[statu])
{
return;
}
m_res[statu] = value;
m_que.push_front(statu);
}
int Get(int statu)
{
return m_res[statu];
}
private:
const int m_iStatuCount;
const int m_iInit;
deque<int> m_que;
vector<int> m_res;
};
class CBFS2 : protected CBFS
{
public:
CBFS2(int iStatuCount1,int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit ), m_iStatuCount2(iStatuCount2)
{
}
bool Peek(int& statu1,int& statu2 )
{
int statu;
if (!CBFS::Peek(statu))
{
return false;
}
statu1 = statu / m_iStatuCount2;
statu2 = statu % m_iStatuCount2;
return true;
}
void PushBack(int statu1,int statu2, int value)
{
CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
}
void PushFront(int statu1, int statu2, int value)
{
CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
}
int Get(int statu1, int statu2)
{
return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
}
private:
const int m_iStatuCount2;
};
class CBFS3 : protected CBFS2
{
public:
CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
{
}
bool Peek(int& statu1, int& statu2,int& statu3 )
{
int statu23;
if (!CBFS2::Peek(statu1,statu23))
{
return false;
}
statu2 = statu23 / m_iStatuCount3;
statu3 = statu23 % m_iStatuCount3;
return true;
}
void PushBack(int statu1, int statu2,int statu3, int value)
{
CBFS2::PushBack(statu1 , statu2*m_iStatuCount3+statu3, value);
}
void PushFront(int statu1, int statu2, int statu3, int value)
{
CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
}
int Get(int statu1, int statu2, int statu3)
{
return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
}
const int m_iStatuCount3;
};
class CBFS4 : protected CBFS3
{
public:
CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
{
}
bool Peek(int& statu1, int& statu2, int& statu3,int& statu4)
{
int statu34;
if (!CBFS3::Peek(statu1, statu2,statu34))
{
return false;
}
statu3 = statu34 / m_iStatuCount4;
statu4 = statu34 % m_iStatuCount4;
return true;
}
void PushBack(int statu1, int statu2, int statu3,int statu4, int value)
{
CBFS3::PushBack(statu1, statu2 , statu3* m_iStatuCount4+ statu4, value);
}
void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
{
CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
}
int Get(int statu1, int statu2, int statu3, int statu4)
{
return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
}
const int m_iStatuCount4;
};
template<class T>
class CEnumGrid
{
public:
static void EnumGrid(const vector<vector<T>>& grid,std::function<void(int,int,T)> call )
{
for (int r = 0; r < grid.size(); r++)
{
for (int c = 0; c < grid.front().size(); c++)
{
call(r, c, grid[r][c]);
}
}
}
};
class Solution {
public:
int minPushBox(vector<vector<char>>& grid) {
m_r = grid.size();
m_c = grid[0].size();
int move[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };
auto CanMove = [&grid](int r, int c)
{
if ((r < 0) || (r >= grid.size()))
{
return false;
}
if ((c < 0) || (c >= grid[0].size()))
{
return false;
}
return '#' != grid[r][c];
};
int sr, sc, br, bc,tr,tc;
CEnumGrid<char>::EnumGrid(grid, [&](int r, int c, char ch)
{
if ('B' == ch)
{
br = r;
bc = c;
}
if ('S' == ch)
{
sr = r;
sc = c;
}
if ('T' == ch)
{
tr = r;
tc = c;
}
});
CBFS4 bfs(m_r, m_c, m_r, m_c);
bfs.PushBack(sr, sc, br, bc, 0);
int r1, c1, r2, c2;
while (bfs.Peek(r1, c1, r2, c2))
{
const int dis = bfs.Get(r1, c1, r2, c2);
if ((r2 == tr) && (c2 == tc))
{
return dis;
}
for (const auto& [mr,mc] : move)
{
auto r3 = r1 + mr;
auto c3 = c1 + mc;
if (!CanMove(r3, c3))
{
continue;
}
if ((r3 == r2) && (c3 == c2))
{//必须移动箱子
auto r4 = r3 + mr;
auto c4 = c3 + mc;
if (!CanMove(r4, c4))
{
continue;
}
bfs.PushBack(r3, c3, r4, c4, dis + 1);
}
else
{
bfs.PushFront(r3, c3, r2, c2, dis );
}
}
}
return -1;
}
int m_r, m_c;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
测试用例
template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}
int main()
{
vector<vector<char>> grid;
{
Solution sln;
grid = { {'#','#','#','#','#','#'},
{'#','T','#','#','#','#'},
{'#','.','.','B','.','#'},
{'#','.','#','#','.','#'},
{'#','.','.','.','S','#'},
{'#','#','#','#','#','#'} };
auto res = sln.minPushBox(grid);
Assert(3, res);
}
{
Solution sln;
grid = { {'#','#','#','#','#','#'},
{'#','T','.','.','#','#'},
{'#','.','#','B','.','#'},
{'#','.','.','.','.','#'},
{'#','.','.','.','S','#'},
{'#','#','#','#','#','#'} };
auto res = sln.minPushBox(grid);
Assert(5, res);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
想法而已,过于复杂:割点、并集查找
状态:箱子所在行列,人所在方位(上右下左) 。
箱子右移的条件:
人能移到箱子左边,箱子能右移(右边没出界,不是墙)
人可能被箱子阻拦:
{
如果没箱子,人无法到达
无法到达。
e
l
s
e
箱子不是割点
能到达
e
l
s
e
是割点,源点和目标点到时间戳都大于(小于)割点时间戳
能到达。
o
t
h
e
r
不能到达。
{如果没箱子,人无法到达无法到达。else箱子不是割点能到达else是割点,源点和目标点到时间戳都大于(小于)割点时间戳能到达。other不能到达。
写了下代码,太复杂了。
错误原因:源点和目标点到时间戳都大于(小于)割点时间戳则能到达是错误的。因为:割点可能被多次访问,所以需要记录割点所有的时间戳,在同一个时间段的可以访问。但这要修改割点函数。抱着一根筋精神,改进了割点函数。
代码
class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size())
{
for (int i = 0; i < vNeiBo.size(); i++) {
for (const auto& n : vNeiBo[i]) {
Union(i, n);
}
}
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount--;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}
bool IsConnect(int iNode1, int iNode2)
{
return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{
const int iNodeSize = m_vNodeToRegion.size();
vector<int> vRet(iNodeSize);
for (int i = 0; i < iNodeSize; i++)
{
vRet[GetConnectRegionIndex(i)]++;
}
return vRet;
}
std::unordered_map<int, vector<int>> GetNodeOfRegion()
{
std::unordered_map<int, vector<int>> ret;
const int iNodeSize = m_vNodeToRegion.size();
for (int i = 0; i < iNodeSize; i++)
{
ret[GetConnectRegionIndex(i)].emplace_back(i);
}
return ret;
}
private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};
class CUnionFindMST
{
public:
CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
{
}
void AddEdge(const int iNode1, const int iNode2, int iWeight)
{
if (m_uf.IsConnect(iNode1, iNode2))
{
return;
}
m_iMST += iWeight;
m_uf.Union(iNode1, iNode2);
}
void AddEdge(const vector<int>& v)
{
AddEdge(v[0], v[1], v[2]);
}
int MST()
{
if (m_uf.GetConnetRegionCount() > 1)
{
return -1;
}
return m_iMST;
}
private:
int m_iMST = 0;
CUnionFind m_uf;
};
class CUnionFindDirect
{
public:
CUnionFindDirect(int iSize)
{
m_vRoot.resize(iSize);
iota(m_vRoot.begin(), m_vRoot.end(), 0);
}
void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo)
{
bConflic = bCyc = false;
if (iFrom != m_vRoot[iFrom])
{
bConflic = true;
}
Fresh(iTo);
if (m_vRoot[iTo] == iFrom)
{
bCyc = true;
}
if (bConflic || bCyc)
{
return;
}
m_vRoot[iFrom] = m_vRoot[iTo];
}
int GetMaxDest(int iFrom)
{
Fresh(iFrom);
return m_vRoot[iFrom];
}
private:
int Fresh(int iNode)
{
if (m_vRoot[iNode] == iNode)
{
return iNode;
}
return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);
}
vector<int> m_vRoot;
};
class CNearestMST
{
public:
CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
{
}
void Init(const vector<vector<int>>& edges)
{
for (const auto& v : edges)
{
Add(v);
}
}
void Add(const vector<int>& v)
{
m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{
int next = start;
while ((next = AddNode(next)) >= 0);
return m_iMST;
}
int MST(int iNode1, int iNode2, int iWeight)
{
m_bDo[iNode1] = true;
for (const auto& it : m_vNeiTable[iNode1])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}
m_iMST = iWeight;
int next = iNode2;
while ((next = AddNode(next)) >= 0);
return m_iMST;
}
private:
int AddNode(int iCur)
{
m_bDo[iCur] = true;
for (const auto& it : m_vNeiTable[iCur])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}
int iMinIndex = -1;
for (int i = 0; i < m_vDis.size(); i++)
{
if (m_bDo[i])
{
continue;
}
if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
{
iMinIndex = i;
}
}
if (-1 != iMinIndex)
{
if (INT_MAX == m_vDis[iMinIndex])
{
m_iMST = -1;
return -1;
}
m_iMST += m_vDis[iMinIndex];
}
return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;
};
class CBFSDis
{
public:
CBFSDis(vector<vector<int>>& vNeiB, vector<int> start)
{
m_vDis.assign(vNeiB.size(), m_iNotMayDis);
queue<int> que;
for (const auto& n : start)
{
m_vDis[n] = 0;
que.emplace(n);
}
while (que.size())
{
const int cur = que.front();
que.pop();
for (const auto next : vNeiB[cur])
{
if (m_iNotMayDis != m_vDis[next])
{
continue;
}
m_vDis[next] = m_vDis[cur] + 1;
que.emplace(next);
}
}
}
public:
const int m_iNotMayDis = 1e9;
vector<int> m_vDis;
};
class C01BFSDis
{
public:
C01BFSDis(vector<vector<int>>& vNeiB0, vector<vector<int>>& vNeiB1, int s)
{
m_vDis.assign(vNeiB0.size(), -1);
std::deque<std::pair<int, int>> que;
que.emplace_back(s, 0);
while (que.size())
{
auto it = que.front();
const int cur = it.first;
const int dis = it.second;
que.pop_front();
if (-1 != m_vDis[cur])
{
continue;
}
m_vDis[cur] = it.second;
for (const auto next : vNeiB0[cur])
{
if (-1 != m_vDis[next])
{
continue;
}
que.emplace_front(next, dis);
}
for (const auto next : vNeiB1[cur])
{
if (-1 != m_vDis[next])
{
continue;
}
que.emplace_back(next, dis + 1);
}
}
}
public:
vector<int> m_vDis;
};
//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class CHeapDis
{
public:
CHeapDis(int n)
{
m_vDis.assign(n, -1);
}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{
std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;
minHeap.emplace(0, start);
while (minHeap.size())
{
const long long llDist = minHeap.top().first;
const int iCur = minHeap.top().second;
minHeap.pop();
if (-1 != m_vDis[iCur])
{
continue;
}
m_vDis[iCur] = llDist;
for (const auto& it : vNeiB[iCur])
{
minHeap.emplace(llDist + it.second, it.first);
}
}
}
vector<long long> m_vDis;
};
//朴素迪杰斯特拉算法
class CN2Dis
{
public:
CN2Dis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
{
}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{
m_vDis.assign(m_iSize, -1);
m_vPre.assign(m_iSize, -1);
vector<bool> vDo(m_iSize);//点是否已处理
auto AddNode = [&](int iNode)
{
//const int iPreNode = m_vPre[iNode];
long long llPreDis = m_vDis[iNode];
vDo[iNode] = true;
for (const auto& it : vNeiB[iNode])
{
if (vDo[it.first])
{
continue;
}
if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
{
m_vDis[it.first] = it.second + llPreDis;
m_vPre[it.first] = iNode;
}
}
long long llMinDis = LLONG_MAX;
int iMinIndex = -1;
for (int i = 0; i < m_vDis.size(); i++)
{
if (vDo[i])
{
continue;
}
if (-1 == m_vDis[i])
{
continue;
}
if (m_vDis[i] < llMinDis)
{
iMinIndex = i;
llMinDis = m_vDis[i];
}
}
return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
};
int next = start;
m_vDis[start] = 0;
while (-1 != (next = AddNode(next)));
}
void Cal(int start, const vector<vector<int>>& mat)
{
m_vDis.assign(m_iSize, LLONG_MAX);
m_vPre.assign(m_iSize, -1);
vector<bool> vDo(m_iSize);//点是否已处理
auto AddNode = [&](int iNode)
{
long long llPreDis = m_vDis[iNode];
vDo[iNode] = true;
for (int i = 0; i < m_iSize; i++)
{
if (vDo[i])
{
continue;
}
const long long llCurDis = mat[iNode][i];
if (llCurDis <= 0)
{
continue;
}
m_vDis[i] = min(m_vDis[i], m_vDis[iNode] + llCurDis);
}
long long llMinDis = LLONG_MAX;
int iMinIndex = -1;
for (int i = 0; i < m_iSize; i++)
{
if (vDo[i])
{
continue;
}
if (m_vDis[i] < llMinDis)
{
iMinIndex = i;
llMinDis = m_vDis[i];
}
}
if (LLONG_MAX == llMinDis)
{
return -1;
}
m_vPre[iMinIndex] = iNode;
return iMinIndex;
};
int next = start;
m_vDis[start] = 0;
while (-1 != (next = AddNode(next)));
}
const vector<long long>& DIS;
const vector<int>& PRE;
private:
const int m_iSize;
vector<long long> m_vDis;//各点到起点的最短距离
vector<int> m_vPre;//最短路径的前一点
};
//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:
CFloyd(const vector<vector<T>>& mat)
{
m_vMat = mat;
const int n = mat.size();
for (int i = 0; i < n; i++)
{//通过i中转
for (int i1 = 0; i1 < n; i1++)
{
for (int i2 = 0; i2 < n; i2++)
{
//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
}
}
}
};
vector<vector<T>> m_vMat;
};
class CParentToNeiBo
{
public:
CParentToNeiBo(const vector<int>& parents)
{
m_vNeiBo.resize(parents.size());
for (int i = 0; i < parents.size(); i++)
{
if (-1 == parents[i])
{
m_root = i;
}
else
{
m_vNeiBo[parents[i]].emplace_back(i);
}
}
}
vector<vector<int>> m_vNeiBo;
int m_root = -1;
};
class CNeiBo2
{
public:
CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
}
CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
}
inline void Add(int iNode1, int iNode2)
{
iNode1 -= m_iBase;
iNode2 -= m_iBase;
m_vNeiB[iNode1].emplace_back(iNode2);
if (!m_bDirect)
{
m_vNeiB[iNode2].emplace_back(iNode1);
}
}
const int m_iN;
const bool m_bDirect;
const int m_iBase;
vector<vector<int>> m_vNeiB;
};
class CNeiBo3
{
public:
CNeiBo3(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
m_vNeiB.resize(n);
AddEdges(edges, bDirect, iBase);
}
CNeiBo3(int n)
{
m_vNeiB.resize(n);
}
void AddEdges(vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
for (const auto& v : edges)
{
m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
if (!bDirect)
{
m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
}
}
}
vector<vector<std::pair<int, int>>> m_vNeiB;
};
template<class T, T INF = 1000 * 1000 * 1000>
class CNeiBoToMat
{
public:
CNeiBoToMat(int n, const vector<vector<int>>& edges, bool bDirect = false, bool b1Base = false)
{
m_vMat.assign(n, vector<int>(n, INF));
for (int i = 0; i < n; i++)
{
m_vMat[i][i] = 0;
}
for (const auto& v : edges)
{
m_vMat[v[0] - b1Base][v[1] - b1Base] = v[2];
if (!bDirect)
{
m_vMat[v[1] - b1Base][v[0] - b1Base] = v[2];
}
}
}
vector<vector<int>> m_vMat;
};
class CCutEdge
{
public:
CCutEdge(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
{
m_vTime.assign(m_iSize, -1);
m_vCutEdges.resize(m_iSize);
for (int i = 0; i < m_iSize; i++)
{
if (-1 != m_vTime[i])
{
continue;
}
m_iRegionCount++;
dfs(i, -1, vNeiB);
}
}
bool IsCut(int node1, int node2)
{
return m_vCutEdges[node1].count(node2);
}
bool IsCut(int node)
{
return m_vCutEdges[node].size();
}
int RegionCount()const
{
return m_iRegionCount;
}
protected:
int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
{
auto& curTime = m_vTime[cur];
curTime = m_iTime++;
int iRet = curTime;
for (const auto& next : vNeiB[cur])
{
if (next == parent)
{
continue;
}
if (-1 != m_vTime[next])
{
iRet = min(iRet, m_vTime[next]);
continue;
}
int iNextTime = dfs(next, cur, vNeiB);
if (iNextTime > curTime)
{
m_vCutEdges[cur].emplace(next);
}
iRet = min(iRet, iNextTime);
}
return iRet;
}
vector<int> m_vTime;
int m_iTime = 0;
int m_iRegionCount = 0;
vector<std::unordered_set<int>> m_vCutEdges;
const int m_iSize;
};
//割点
class CCutPoint
{
public:
CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
{
m_vTime.assign(m_iSize, -1);
m_vVisitMin.assign(m_iSize, -1);
for (int i = 0; i < m_iSize; i++)
{
if (-1 != m_vTime[i])
{
continue;
}
m_iRegionCount++;
dfs(i, -1, vNeiB);
}
}
int RegionCount()const
{
return m_iRegionCount;
}
const vector<int>& CutPoints()const
{
return m_vCutPoints;
}
const vector<int>& Tinme()const { return m_vTime; }
protected:
void dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
{
auto& curTime = m_vTime[cur];
auto& visitMin = m_vVisitMin[cur];
curTime = m_iTime++;
visitMin = curTime;
int iMax = -1;
int iChildNum = 0;
for (const auto& next : vNeiB[cur])
{
if (next == parent)
{
continue;
}
if (-1 != m_vTime[next])
{
visitMin = min(visitMin, m_vTime[next]);
continue;
}
iChildNum++;
dfs(next, cur, vNeiB);
visitMin = min(visitMin, m_vVisitMin[next]);
iMax = max(iMax, m_vVisitMin[next]);
}
if (-1 == parent)
{
if (iChildNum >= 2)
{
m_vCutPoints.emplace_back(cur);
}
}
else
{
if (iMax >= curTime)
{
m_vCutPoints.emplace_back(cur);
}
}
}
vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
vector<int> m_vVisitMin;//
int m_iTime = 0;
int m_iRegionCount = 0;
vector<int> m_vCutPoints;
const int m_iSize;
};
class CTopSort
{
public:
//vBackNeiBo[1] = {2} 表示 1完成后,才能完成2
template<class T >
void Init(vector<T>& vPreToNext)
{
m_c = vPreToNext.size();
vector<int> vInDeg(m_c);
for (int cur = 0; cur < m_c; cur++)
{
for (const auto& next : vPreToNext[cur])
{
vInDeg[next]++;
}
}
queue<int> que;
for (int i = 0; i < m_c; i++)
{
if (0 == vInDeg[i])
{
que.emplace(i);
m_vLeaf.emplace_back(i);
OnDo(-1, i);
}
}
while (que.size())
{
const int cur = que.front();
que.pop();
for (const auto& next : vPreToNext[cur])
{
vInDeg[next]--;
if (0 == vInDeg[next])
{
que.emplace(next);
OnDo(cur, next);
}
}
};
}
virtual void OnDo(int pre, int cur) = 0;
int m_c;
vector<int> m_vLeaf;
};
struct CVec
{
int r;
int c;
};
struct CPos
{
int r = 0, c = 0;
int ToMask()const { return s_MaxC * r + c; };
bool operator==(const CPos& o)const
{
return (r == o.r) && (c == o.c);
}
CPos operator+(const CVec& v)const
{
return { r + v.r, c + v.c };
}
CPos operator-(const CVec& v)const
{
return{ r - v.r, c - v.c };
}
CVec operator-(const CPos& o)const
{
return {r - o.r,c- o.c};
}
inline static int s_MaxC = 10'000;
};
class CRange
{
public:
CRange(int rCount, int cCount, std::function<bool(int, int)> funVilidCur):m_r(rCount),m_c(cCount), m_funVilidCur(funVilidCur)
{
}
bool Vilid(CPos pos)const
{
return (pos.r >= 0) && (pos.r < m_r) && (pos.c >= 0) && (pos.c < m_c) && m_funVilidCur(pos.r, pos.c);
}
const int m_r, m_c;
protected:
std::function<bool(int, int)> m_funVilidCur;
};
class CGridToNeiBo
{
public:
static vector<vector<int>> ToNeiBo(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
{
vector<vector<int>> vNeiBo(rCount * cCount);
auto Move = [&](int preR, int preC, int r, int c)
{
if ((r < 0) || (r >= rCount))
{
return;
}
if ((c < 0) || (c >= cCount))
{
return;
}
if (funVilidCur(preR, preC) && funVilidNext(r, c))
{
vNeiBo[cCount*preR+preC].emplace_back(r*cCount+ c);
}
};
for (int r = 0; r < rCount; r++)
{
for (int c = 0; c < cCount; c++)
{
Move(r, c, r + 1, c);
Move(r, c, r - 1, c);
Move(r, c, r, c + 1);
Move(r, c, r, c - 1);
}
}
return vNeiBo;
}
};
template<class T = int>
class CEnumGrid
{
public:
static void EnumGrid(vector<vector<T>>& grid, std::function<void(int, int, T&)> call)
{
for (int r = 0; r < grid.size(); r++)
{
for (int c = 0; c < grid.front().size(); c++)
{
call(r, c, grid[r][c]);
}
}
}
static void EnumPos(vector<vector<T>>& grid, vector<tuple<T, CPos&>> vRes)
{
EnumGrid(grid, [&vRes](int curR, int curC, T& curV)
{
for (auto& [value, pos] : vRes)
{
if (curV == value)
{
pos = { curR,curC };
}
}
});
}
inline static const CVec s_Move4[4] = { {1,0},{0,1},{-1,0},{0,-1} };//上右下左
enum {UP=0,RIGHT,DOWN,LEFT};
};
class CEnumGridEdge
{
public:
CEnumGridEdge(int r, int c, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext) :m_r(r), m_c(c)
{
m_funVilidCur = funVilidCur;
m_funVilidNext = funVilidNext;
m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));
Init();
}
vector<vector<int>> BFS(vector<pair<int, int>> start, const int endr = -1, const int endc = -1)
{
vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));
queue<pair<int, int>> que;
for (const auto& [r, c] : start)
{
vDis[r][c] = 0;
que.emplace(make_pair(r, c));
}
while (que.size())
{
const auto [r, c] = que.front();
que.pop();
for (const auto [nr, nc] : m_vNext[r][c])
{
if (-1 != vDis[nr][nc])
{
continue;
}
vDis[nr][nc] = vDis[r][c] + 1;
if ((endr == nr) && (endc == nc))
{
break;
}
que.emplace(make_pair(nr, nc));
}
}
return vDis;
}
const int m_r, m_c;
vector < vector < vector<pair<int, int>>>> m_vNext;
protected:
void Init()
{
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
Move(r, c, r + 1, c);
Move(r, c, r - 1, c);
Move(r, c, r, c + 1);
Move(r, c, r, c - 1);
}
}
}
void Move(int preR, int preC, int r, int c)
{
if ((r < 0) || (r >= m_r))
{
return;
}
if ((c < 0) || (c >= m_c))
{
return;
}
if (m_funVilidCur(preR, preC) && m_funVilidNext(r, c))
{
m_vNext[preR][preC].emplace_back(r, c);
}
};
std::function<bool(int, int)> m_funVilidCur, m_funVilidNext;
};
class CBFS
{
public:
CBFS(int iStatuCount, int iInit = -1) :m_iStatuCount(iStatuCount), m_iInit(iInit)
{
m_res.assign(iStatuCount, iInit);
}
bool Peek(int& statu)
{
if (m_que.empty())
{
return false;
}
statu = m_que.front();
m_que.pop_front();
return true;
}
void PushBack(int statu, int value)
{
if (m_iInit != m_res[statu])
{
return;
}
m_res[statu] = value;
m_que.push_back(statu);
}
void PushFront(int statu, int value)
{
if (m_iInit != m_res[statu])
{
return;
}
m_res[statu] = value;
m_que.push_front(statu);
}
int Get(int statu)
{
return m_res[statu];
}
private:
const int m_iStatuCount;
const int m_iInit;
deque<int> m_que;
vector<int> m_res;
};
class CBFS2 : protected CBFS
{
public:
CBFS2(int iStatuCount1, int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit), m_iStatuCount2(iStatuCount2)
{
}
bool Peek(int& statu1, int& statu2)
{
int statu;
if (!CBFS::Peek(statu))
{
return false;
}
statu1 = statu / m_iStatuCount2;
statu2 = statu % m_iStatuCount2;
return true;
}
void PushBack(int statu1, int statu2, int value)
{
CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);
}
void PushFront(int statu1, int statu2, int value)
{
CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);
}
int Get(int statu1, int statu2)
{
return CBFS::Get(statu1 * m_iStatuCount2 + statu2);
}
private:
const int m_iStatuCount2;
};
class CBFS3 : protected CBFS2
{
public:
CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3)
{
}
bool Peek(int& statu1, int& statu2, int& statu3)
{
int statu23;
if (!CBFS2::Peek(statu1, statu23))
{
return false;
}
statu2 = statu23 / m_iStatuCount3;
statu3 = statu23 % m_iStatuCount3;
return true;
}
void PushBack(int statu1, int statu2, int statu3, int value)
{
CBFS2::PushBack(statu1, statu2 * m_iStatuCount3 + statu3, value);
}
void PushFront(int statu1, int statu2, int statu3, int value)
{
CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);
}
int Get(int statu1, int statu2, int statu3)
{
return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);
}
const int m_iStatuCount3;
};
class CBFS4 : protected CBFS3
{
public:
CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4)
{
}
bool Peek(int& statu1, int& statu2, int& statu3, int& statu4)
{
int statu34;
if (!CBFS3::Peek(statu1, statu2, statu34))
{
return false;
}
statu3 = statu34 / m_iStatuCount4;
statu4 = statu34 % m_iStatuCount4;
return true;
}
void PushBack(int statu1, int statu2, int statu3, int statu4, int value)
{
CBFS3::PushBack(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
}
void PushFront(int statu1, int statu2, int statu3, int statu4, int value)
{
CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);
}
int Get(int statu1, int statu2, int statu3, int statu4)
{
return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);
}
const int m_iStatuCount4;
};
class CCutPointEx
{
public:
CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
{
m_vTime.assign(m_iSize, -1);
m_vCutRegion.resize(m_iSize);
m_vNodeToRegion.assign(m_iSize,-1);
m_vCut.assign(m_iSize, false);
for (int i = 0; i < m_iSize; i++)
{
if (-1 != m_vTime[i])
{
continue;
}
dfs(i, -1, vNeiB);
m_iRegionCount++;
}
}
bool Visit(int src, int dest, int iCut)
{
if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])
{
return false;//不在一个连通区域
}
if (!m_vCut[iCut])
{
return true;
}
const int r1 = GetCutRegion(iCut,src);
const int r2 = GetCutRegion(iCut, dest);
return r1 == r2;
}
protected:
int dfs(int cur, int parent, const vector<vector<int>>& vNeiB)
{
auto& curTime = m_vTime[cur];
m_vNodeToRegion[cur] = m_iRegionCount;
curTime = m_iTime++;
int iCutChild=0;
int iMinTime = curTime;
for (const auto& next : vNeiB[cur])
{
if (next == parent)
{
continue;
}
if (-1 != m_vTime[next])
{
iMinTime = min(iMinTime, m_vTime[next]);
continue;
}
int iChildBeginTime = m_iTime;
const int iChildMinTime = dfs(next, cur, vNeiB);
iMinTime = min(iMinTime, iChildMinTime);
if (iChildMinTime >= curTime)
{
iCutChild++;
m_vCutRegion[cur].push_back({ iChildBeginTime,m_iTime });
};
}
m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;
return iMinTime;
}
int GetCutRegion(int iCut, int iNode)const
{
const auto& v = m_vCutRegion[iCut];
auto it = std::upper_bound(v.begin(), v.end(), m_vTime[iNode],[](int time, const std::pair<int, int>& pr) {return time < pr.first; });
if (v.begin() == it)
{
return v.size();
}
--it;
return (it->second > m_vTime[iNode]) ? (it - v.begin()) : v.size();
}
int m_iTime = 0;
const int m_iSize;
int m_iRegionCount=0;
vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理
vector<bool> m_vCut;
vector<int> m_vNodeToRegion;
vector<vector<pair<int,int>>> m_vCutRegion;
};
class Solution {
public:
int minPushBox(vector<vector<char>>& grid) {
auto Vilid = [&](int r, int c) {return '#' != grid[r][c]; };
CRange range(grid.size(), grid.front().size(), Vilid);
CPos::s_MaxC = range.m_c;
auto neiBo = CGridToNeiBo::ToNeiBo(range.m_r, range.m_c, Vilid, Vilid);
CCutPointEx cutPoint(neiBo);
auto Visit = [&](CPos s, CPos d, CPos b){
return range.Vilid(d) && cutPoint.Visit(s.ToMask(),d.ToMask(),b.ToMask());
};
CBFS3 bfs(range.m_r, range.m_c, 4);
CPos sInit,tInit,bInit;
CEnumGrid<char>::EnumPos(grid, { { 'B',bInit },{'T',tInit},{'S',sInit} });
auto MovePeo = [&](CPos peo, CPos bCur, int iCurDis) {
for (int i = 0; i < 4; i++) {
if (Visit(peo, bCur + CEnumGrid<>::s_Move4[i], bCur)) {
bfs.PushFront(bCur.r, bCur.c, i, iCurDis);
}
}
};
MovePeo(sInit, bInit, 0);
int br1, bc1, pd;
while (bfs.Peek(br1, bc1, pd)) {
CPos bCur = { br1,bc1 };
CPos peo = bCur + CEnumGrid<>::s_Move4[pd];
const int CurDis = bfs.Get(br1, bc1, pd);
if (bCur == tInit ) {
return CurDis; }
MovePeo(peo, bCur, CurDis);
auto dest = bCur - CEnumGrid<>::s_Move4[pd];
if (range.Vilid(dest)){
bfs.PushBack(dest.r, dest.c, pd, CurDis + 1);
}
}
return -1;
}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
2023年4月
class CGridCanVisit
{
public:
CGridCanVisit(const vector
{
m_vDis.assign(m_r, vector(m_c,INT_MAX/2));
Dist(r, c);
}
bool Vilid(const int r,const int c )
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector
{
return m_vDis;
}
const vector
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector
std::queue
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}
que.emplace(r, c);
m_vDis[r][c] = iDis;
vHasDo[r][c] = true;
};
Add(r, c, 0);
while (que.size())
{
const int r = que.front().first;
const int c = que.front().second;
que.pop();
const int iDis = m_vDis[r][c];
Add(r + 1, c, iDis + 1);
Add(r - 1, c, iDis + 1);
Add(r, c + 1, iDis + 1);
Add(r, c - 1, iDis + 1);
}
}
vector
const int m_r;
const int m_c;
};
class Solution {
public:
int minPushBox(vector
std::pair
m_r = grid.size();
m_c = grid[0].size();
vector
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
const char ch = grid[r][c];
if (‘S’ == ch)
{
pS = std::make_pair(r, c);
}
else if (‘T’ == ch)
{
pT = std::make_pair(r, c);
}
else if (‘B’ == ch)
{
pB = std::make_pair(r, c);
}
vCanVisit[r][c] = ‘#’ != ch;
}
}
std::unordered_set vHasDo;
std::queue
auto Add = [&](int r, int c, int iSR, int iSC)
{
const int iMask = r * 100 * 100 * 100 + c * 100 * 100 + iSR * 100 + iSC;
if (vHasDo.count(iMask))
{
return;
}
vHasDo.insert(iMask);
que.emplace(r, c, iSR, iSC);
};
auto Move = [&]( CGridCanVisit& gc,int r, int c, int iOldR, int iOldC, int iSR, int iSC)
{
if (!gc.Vilid(r, c))
{
return;//非法行列好
}
if (!gc.m_bCanVisit[r][c])
{//rc是墙无法推动
return;
}
auto vDis = gc.Dis();
const int r2 = iOldR * 2 - r;
const int c2 = iOldC * 2 - c;
if (!gc.Vilid(r2, c2))
{
return;
}
if (vDis[r2][c2] >= 1000 * 1000)
{
return;//人没有地方占,无法推
}
Add(r, c, iOldR, iOldC);
};
std::queue
preQue.emplace(pB.first, pB.second, pS.first, pS.second);
for (int i = 0; preQue.size(); i++ )
{
while (preQue.size())
{
auto cur = preQue.front();
if ((get<0>(cur) == pT.first) && (get<1>(cur) == pT.second))
{
return i;
}
preQue.pop();
auto tmp = vCanVisit;
tmp[get<0>(cur)][get<1>(cur)] = false;
CGridCanVisit gc(tmp, get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)+1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)-1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)+1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)-1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
}
preQue.swap(que);
}
return -1;
}
int m_r;
int m_c;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。



评论记录:
回复评论: