首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C++二分查找算法:有序矩阵中的第 k 个最小数组和

  • 25-02-22 05:00
  • 3863
  • 6120
blog.csdn.net

本文涉及的基础知识点

二分查找算法合集

本题的简化

C++二分查找算法:查找和最小的 K 对数字 十分接近m恒等于2

题目

给你一个 m * n 的矩阵 mat,以及一个整数 k ,矩阵中的每一行都以非递减的顺序排列。
你可以从每一行中选出 1 个元素形成一个数组。返回所有可能数组中的第 k 个 最小 数组和。
示例 1:
输入:mat = [[1,3,11],[2,4,6]], k = 5
输出:7
解释:从每一行中选出一个元素,前 k 个和最小的数组分别是:
[1,2], [1,4], [3,2], [3,4], [1,6]。其中第 5 个的和是 7 。
示例 2:
输入:mat = [[1,3,11],[2,4,6]], k = 9
输出:17
示例 3:
输入:mat = [[1,10,10],[1,4,5],[2,3,6]], k = 7
输出:9
解释:从每一行中选出一个元素,前 k 个和最小的数组分别是:
[1,1,2], [1,1,3], [1,4,2], [1,4,3], [1,1,6], [1,5,2], [1,5,3]。其中第 7 个的和是 9 。
示例 4:
输入:mat = [[1,1,10],[2,2,9]], k = 7
输出:12
参数范围:
m == mat.length
n == mat.length[i]
1 <= m, n <= 40
1 <= k <= min(200, n ^ m)
1 <= mat[i][j] <= 5000
mat[i] 是一个非递减数组

分析

时间复杂度

O(mlog(500040)n+mkn)。GetLessKSum被调用m次,GetLessEqualSumNum共被调用mlog(500040)次。每次调用GetLessEqualSumNum,for循环共执行m次。
vRet.emplace_back极端情况下,可能被执行k
n次。

主要函数介绍

GetLessKSum两行升序数据的最小k个和
GetLessEqualSumNum两行升序数据和小于等于iSum的组合数量

注意:nums[i]为正数,所以如果pre的数量大于k,只需要保留前k小,其它的被淘汰了。

二分

寻找第一个符合条件的iSum,条件如下:
和小于等于iSum的组合数量大于等于k。

代码

核心代码

class Solution {
public:
	int kthSmallest(vector<vector<int>>& mat, int k) {
		m_c = mat.front().size();
		m_iK = k;
		vector<int> pre = mat[0];
		for (int r = 1; r < mat.size(); r++)
		{
			pre = GetLessKSum(pre, mat[r]);
		}
		return pre.back();
	}
	vector<int> GetLessKSum(const vector<int>& pre, const vector<int>& cur)
	{
		int left = 0, right = 5000 * 40;
		while (right - left > 1)
		{
			const auto mid = left + (right - left) / 2;
			if (GetLessEqualSumNum(pre, cur, mid)>= m_iK)
			{
				right = mid;
			}
			else
			{
				left = mid;
			}
		}
		vector<int> vRet;
		for (const auto& pr : pre)
		{
			for (const auto& cu : cur)
			{
				if (pr + cu <= right)
				{
					vRet.emplace_back(pr + cu);
				}
				else
				{
					break;
				}
			}
		}
		sort(vRet.begin(), vRet.end());
		if (vRet.size() > m_iK)
		{
			vRet.erase(vRet.begin() + m_iK, vRet.end());
		}
		return vRet;
	}
	int GetLessEqualSumNum(const vector<int>& pre, const vector<int>& cur,int iSum)
	{
		int iNum = 0;
		for (const auto& pr : pre)
		{
			iNum += std::upper_bound(cur.begin(), cur.end(), iSum - pr)- cur.begin();
		}
		return iNum;
	}
	int m_iK;
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}

int main()
{
vector mat;
int k;
int res;
{
Solution slu;
mat = { {1,3,11},{2,4,6} };
k = 5;
res = slu.kthSmallest(mat, k);
Assert(7, res);
}
{
Solution slu;
mat = { {1,3,11},{2,4,6} };
k = 9;
res = slu.kthSmallest(mat, k);
Assert(17, res);
}
{
Solution slu;
mat = { {1,10,10},{1,4,5},{2,3,6} };
k = 7;
res = slu.kthSmallest(mat, k);
Assert(9, res);
}
{
Solution slu;
mat = { {1,1,10},{2,2,9} };
k = 7;
res = slu.kthSmallest(mat, k);
Assert(12, res);
}

//CConsole::Out(res);
  • 1

}

优化增加结果

vector<int> vRet;
	for (const auto& pr : pre)
	{
		for (const auto& cu : cur)
		{
			if (pr + cu < right)
			{
				vRet.emplace_back(pr + cu);
			}
			else
			{
				break;
			}
		}
	}
	while (vRet.size() < m_iK)
	{
		vRet.emplace_back(right);
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

和小于right的数量<=k,如果不足够,则补right。时间复杂度由O(nk)降低到O(k+n)。

直接使用封装类

namespace NBinarySearch
{
	template<class INDEX_TYPE,class _Pr>
	INDEX_TYPE FindFrist(INDEX_TYPE left, INDEX_TYPE right, _Pr pr)
	{
		while (right - left > 1)
		{
			const auto mid = left + (right - left) / 2;
			if (pr(mid))
			{
				right = mid;
			}
			else
			{
				left = mid;
			}
		}
		return right;
	}
}


class Solution {
public:
	int kthSmallest(vector<vector<int>>& mat, int k) {
		m_c = mat.front().size();
		m_iK = k;
		vector<int> pre = mat[0];
		for (int r = 1; r < mat.size(); r++)
		{
			pre = GetLessKSum(pre, mat[r]);
		}
		return pre.back();
	}
	vector<int> GetLessKSum(const vector<int>& pre, const vector<int>& cur)
	{
		auto GetLessEqualSumNum = [&pre, &cur, this](const int iSum)-> bool
		{
			int iNum = 0;
			for (const auto& pr : pre)
			{
				iNum += std::upper_bound(cur.begin(), cur.end(), iSum - pr) - cur.begin();
			}
			return iNum >= m_iK;
		};
		const int right = NBinarySearch::FindFrist(0, 5000 * 40, GetLessEqualSumNum);		
		vector<int> vRet;
		for (const auto& pr : pre)
		{
			for (const auto& cu : cur)
			{
				if (pr + cu < right)
				{
					vRet.emplace_back(pr + cu);
				}
				else
				{
					break;
				}
			}
		}
		while (vRet.size() < m_iK)
		{
			vRet.emplace_back(right);
		}
		sort(vRet.begin(), vRet.end());
		if (vRet.size() > m_iK)
		{
			vRet.erase(vRet.begin() + m_iK, vRet.end());
		}
		return vRet;
	}
	int GetLessEqualSumNum(const vector<int>& pre, const vector<int>& cur,int iSum)
	{
		int iNum = 0;
		for (const auto& pr : pre)
		{
			iNum += std::upper_bound(cur.begin(), cur.end(), iSum - pr)- cur.begin();
		}
		return iNum;
	}
	int m_iK;
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84

2023年3月暴力版

直接保留前k个。时间复杂度:O(mknlogk)
class Solution {
public:
int kthSmallest(vector& mat, int k) {
m_r = mat.size();
m_c = mat[0].size();
std::priority_queue pre;
pre.push(0);
for (int r = 0; r < mat.size(); r++)
{
std::priority_queue dp;
while (pre.size())
{
int t = pre.top();
pre.pop();
for (int c = 0; c < m_c; c++)
{
dp.push(mat[r][c] + t);
if (dp.size() > k)
{
dp.pop();
}
}
}
pre.swap(dp);
}
return pre.top();
}
int m_r, m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨子曰:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览55452 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/134487140"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2491) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top