首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【深度优先搜索】【树】【图论】2973. 树中每个节点放置的金币数目

  • 25-02-22 04:41
  • 2277
  • 12901
blog.csdn.net

作者推荐

视频算法专题

本博文涉及知识点

深度优先搜索 树 图论 分类讨论

LeetCode2973. 树中每个节点放置的金币数目

给你一棵 n 个节点的 无向 树,节点编号为 0 到 n - 1 ,树的根节点在节点 0 处。同时给你一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间有一条边。
给你一个长度为 n 下标从 0 开始的整数数组 cost ,其中 cost[i] 是第 i 个节点的 开销 。
你需要在树中每个节点都放置金币,在节点 i 处的金币数目计算方法如下:
如果节点 i 对应的子树中的节点数目小于 3 ,那么放 1 个金币。
否则,计算节点 i 对应的子树内 3 个不同节点的开销乘积的 最大值 ,并在节点 i 处放置对应数目的金币。如果最大乘积是 负数 ,那么放置 0 个金币。
请你返回一个长度为 n 的数组 coin ,coin[i]是节点 i 处的金币数目。
示例 1:
在这里插入图片描述

输入:edges = [[0,1],[0,2],[0,3],[0,4],[0,5]], cost = [1,2,3,4,5,6]
输出:[120,1,1,1,1,1]
解释:在节点 0 处放置 6 * 5 * 4 = 120 个金币。所有其他节点都是叶子节点,子树中只有 1 个节点,所以其他每个节点都放 1 个金币。
示例 2:
在这里插入图片描述

输入:edges = [[0,1],[0,2],[1,3],[1,4],[1,5],[2,6],[2,7],[2,8]], cost = [1,4,2,3,5,7,8,-4,2]
输出:[280,140,32,1,1,1,1,1,1]
解释:每个节点放置的金币数分别为:

  • 节点 0 处放置 8 * 7 * 5 = 280 个金币。
  • 节点 1 处放置 7 * 5 * 4 = 140 个金币。
  • 节点 2 处放置 8 * 2 * 2 = 32 个金币。
  • 其他节点都是叶子节点,子树内节点数目为 1 ,所以其他每个节点都放 1 个金币。
    示例 3:
    在这里插入图片描述

输入:edges = [[0,1],[0,2]], cost = [1,2,-2]
输出:[0,1,1]
解释:节点 1 和 2 都是叶子节点,子树内节点数目为 1 ,各放置 1 个金币。节点 0 处唯一的开销乘积是 2 * 1 * -2 = -4 。所以在节点 0 处放置 0 个金币。

提示:
2 <= n <= 2 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
cost.length == n
1 <= |cost[i]| <= 104
edges 一定是一棵合法的树。

分类讨论

情况表面上很多,时间上只有4情况:
{ 1 不足 3 个节点 最大的三个正数的乘积 至少 3 个正数节点 1 个正数和 2 个负数的乘积 至少一个正数节点, 2 个负数节点 0 o t h e r

⎧⎩⎨⎪⎪⎪⎪1最大的三个正数的乘积1个正数和2个负数的乘积0不足3个节点至少3个正数节点至少一个正数节点,2个负数节点other
⎩ ⎨ ⎧​1最大的三个正数的乘积1个正数和2个负数的乘积0​不足3个节点至少3个正数节点至少一个正数节点,2个负数节点other​
正数节点都只需要记录3个节点,2个不够。

3个负数节点,0个正数节点。值是0。
2个负数节点,0个正数节点。值是1。
注意:cost[i]不会为0。

代码

核心代码

class CNeiBo2
{
public:
	CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
	}
	CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
	}
	inline void Add(int iNode1, int iNode2)
	{
		iNode1 -= m_iBase;
		iNode2 -= m_iBase;
		m_vNeiB[iNode1].emplace_back(iNode2);
		if (!m_bDirect)
		{
			m_vNeiB[iNode2].emplace_back(iNode1);
		}
	}
	const int m_iN;
	const bool m_bDirect;
	const int m_iBase;
	vector<vector<int>> m_vNeiB;
};

class Solution {
public:
	vector<long long> placedCoins(vector<vector<int>>& edges, vector<int>& cost) {
		m_vAns.resize(cost.size());
		m_cost = cost;
		CNeiBo2 neiBo(cost.size(), edges, false);
		std::priority_queue<int> maxHeap;
		std::priority_queue<int, vector<int>, greater<int> > minHeap;
		DFS(maxHeap, minHeap, neiBo.m_vNeiB, 0, -1);
		return m_vAns;
	}
	void DFS(std::priority_queue<int>& maxHeap, std::priority_queue<int, vector<int>, greater<int> >& minHeap,const vector<vector<int>>& neiBo, int cur, int par)
	{
		if (m_cost[cur] >= 0)
		{
			minHeap.emplace(m_cost[cur]);
		}
		else
		{
			maxHeap.emplace(m_cost[cur]);
		}
		for (const auto& next : neiBo[cur])
		{
			if (next == par)
			{
				continue;
			}
			std::priority_queue<int> maxHeap1;
			std::priority_queue<int, vector<int>, greater<int> > minHeap1;
			DFS(maxHeap1,minHeap1,neiBo, next, cur);
			Union(maxHeap, maxHeap1);
			Union(minHeap, minHeap1);
		}
		auto Cal = [&]()
		{
			if (maxHeap.size() + minHeap.size() <3 )
			{
				return 1LL;
			} 
			long long llRet = 0;
			auto v1 = ToVector(minHeap);
			auto v2 = ToVector(maxHeap);			
			if (3 == minHeap.size())
			{		
				llRet =max(llRet, (long long)v1[0] * v1[1] * v1[2]);
			}
			if (minHeap.size()&& (maxHeap.size() >= 2))
			{				
				if (v2.size() > 2)
				{
					v2.erase(v2.begin());
				}				
				llRet = max(llRet, (long long)v1.back() * v2[0] * v2[1]);
			}
			return llRet;
		};
		m_vAns[cur] = Cal();
	}

protected:
	template<class T>
	vector<int> ToVector(T heap)
	{
		vector<int> v;
		while (heap.size())
		{
			v.emplace_back(heap.top());
			heap.pop();
		}
		T heap2(v.begin(), v.end());
		heap2.swap(heap);
		return v;
	}
	template<class T>
	void Union(T& heap1, T& heap2)
	{
		while (heap2.size())
		{
			heap1.emplace(heap2.top());
			heap2.pop();
		}
		while (heap1.size() > 3)
		{
			heap1.pop();
		}
	}
	vector<long long> m_vAns;
	vector<int> m_cost;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<int>> edges;
	vector<int> cost;
	{
		Solution sln;
		edges = { {0,1},{0,2},{2,3} }, cost = { 10000, -10000, 10000, -10000 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 1000000000000,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{0,3},{0,4},{0,5} }, cost = { 1,2,3,4,5,6 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 120,1,1,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{1,3},{1,4},{1,5},{2,6},{2,7},{2,8} }, cost = { 1,4,2,3,5,7,8,-4,2 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 280,140,32,1,1,1,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2} }, cost = { 1,2,-2 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 0,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{0,3},{0,4},{0,5},{0,6},{0,7},{0,8},{0,9},{0,10},{0,11},{0,12},{0,13},{0,14},{0,15},{0,16},{0,17},{0,18},{0,19},{0,20},{0,21},{0,22},{0,23},{0,24},{0,25},{0,26},{0,27},{0,28},{0,29},{0,30},{0,31},{0,32},{0,33},{0,34},{0,35},{0,36},{0,37},{0,38},{0,39},{0,40},{0,41},{0,42},{0,43},{0,44},{0,45},{0,46},{0,47},{0,48},{0,49},{0,50},{0,51},{0,52},{0,53},{0,54},{0,55},{0,56},{0,57},{0,58},{0,59},{0,60},{0,61},{0,62},{0,63},{0,64},{0,65},{0,66},{0,67},{0,68},{0,69},{0,70},{0,71},{0,72},{0,73},{0,74},{0,75},{0,76},{0,77},{0,78},{0,79},{0,80},{0,81},{0,82},{0,83},{0,84},{0,85},{0,86},{0,87},{0,88},{0,89},{0,90},{0,91},{0,92},{0,93},{0,94},{0,95},{0,96},{0,97},{0,98},{0,99} };
		cost={-5959, 602, -6457, 7055, -1462, 6347, 7226, -8422, -6088, 2997, -7909, 6433, 5217, 3294, -3792, 7463, 8538, -3811, 5009, 151, 5659, 4458, -1702, -1877, 2799, 9861, -9668, -1765, 2181, -8128, 7046, 9529, 6202, -8026, 6464, 1345, 121, 1922, 7274, -1227, -9914, 3025, 1046, -9368, -7368, 6205, -6342, 8091, -6732, -7620, 3276, 5136, 6871, 4823, -1885, -4005, -3974, -2725, -3845, -8508, 7201, -9566, -7236, -3386, 4021, 6793, -8759, 5066, 5879, -5171, 1011, 1242, 8536, -8405, -9646, -214, 2251, -9934, -8820, 6206, 1006, 1318, -9712, 7230, 5608, -4601, 9185, 346, 3056, 8913, -2454, -3445, -4295, 4802, -8852, -6121, -4538, -5580, -9246, -6462};
		auto res = sln.placedCoins(edges, cost);
		sort(cost.begin(), cost.end());
		Assert({ 971167251036, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, res);
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

第二版

class CNeiBo2
{
public:
CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
}
CNeiBo2(int n, vector& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
}
inline void Add(int iNode1, int iNode2)
{
iNode1 -= m_iBase;
iNode2 -= m_iBase;
m_vNeiB[iNode1].emplace_back(iNode2);
if (!m_bDirect)
{
m_vNeiB[iNode2].emplace_back(iNode1);
}
}
const int m_iN;
const bool m_bDirect;
const int m_iBase;
vector m_vNeiB;
};

class Solution {
public:
vector placedCoins(vector& edges, vector& cost) {
m_cost = cost;
m_vAns.resize(cost.size());
CNeiBo2 neiBo(cost.size(), edges, false);
multiset more0;
multiset less0;
DFS(more0, less0, neiBo.m_vNeiB, 0, -1);
return m_vAns;
}
void DFS(multiset& more0, multiset& less0, vector& neiBo, int cur, int par)
{
if (m_cost[cur] > 0)
{
more0.emplace(m_cost[cur]);
}
else
{
less0.emplace(m_cost[cur]);
}
for (const auto& next : neiBo[cur])
{
if (next == par)
{
continue;
}
multiset more01;
multiset less01;
DFS(more01, less01, neiBo, next, cur);
Union(more0, more01);
Union(less0, less01);
}
long long& llRet = m_vAns[cur];
if (more0.size() + less0.size() < 3)
{
llRet = 1;
return;
}
if (more0.size() >= 3)
{
auto it = more0.begin();
llRet = max(llRet, (long long)*(it++) * *(it++) * (it++));
}
if (more0.size() && (less0.size() >= 2))
{
llRet = max(llRet, (long long)
(more0.begin()) * *(less0.begin()) * *(std::next(less0.begin())));
}
};
template
void Union(T& set1, const T& set2)
{
for (const auto& n : set2)
{
set1.emplace(n);
}
while (set1.size() > 3)
{
set1.erase(prev(set1.end()));
}
}
vector m_cost;
vector m_vAns;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览58103 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/136078059"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top