作者推荐
涉及知识点
动态规划 字符串 滚动向量
LeetCode 639. 解码方法 II
一条包含字母 A-Z 的消息通过以下的方式进行了 编码 :
 ‘A’ -> “1”
 ‘B’ -> “2”
 …
 ‘Z’ -> “26”
 要 解码 一条已编码的消息,所有的数字都必须分组,然后按原来的编码方案反向映射回字母(可能存在多种方式)。例如,“11106” 可以映射为:
 “AAJF” 对应分组 (1 1 10 6)
 “KJF” 对应分组 (11 10 6)
 注意,像 (1 11 06) 这样的分组是无效的,因为 “06” 不可以映射为 ‘F’ ,因为 “6” 与 “06” 不同。
 除了 上面描述的数字字母映射方案,编码消息中可能包含 '’ 字符,可以表示从 ‘1’ 到 ‘9’ 的任一数字(不包括 ‘0’)。例如,编码字符串 "1" 可以表示 “11”、“12”、“13”、“14”、“15”、“16”、“17”、“18” 或 “19” 中的任意一条消息。对 “1*” 进行解码,相当于解码该字符串可以表示的任何编码消息。
 给你一个字符串 s ,由数字和 '’ 字符组成,返回 解码 该字符串的方法 数目 。
 由于答案数目可能非常大,返回 109 + 7 的 模 。
 示例 1:
 输入:s = ""
 输出:9
 解释:这一条编码消息可以表示 “1”、“2”、“3”、“4”、“5”、“6”、“7”、“8” 或 “9” 中的任意一条。
 可以分别解码成字符串 “A”、“B”、“C”、“D”、“E”、“F”、“G”、“H” 和 “I” 。
 因此,“" 总共有 9 种解码方法。
 示例 2:
 输入:s = "1”
 输出:18
 解释:这一条编码消息可以表示 “11”、“12”、“13”、“14”、“15”、“16”、“17”、“18” 或 “19” 中的任意一条。
 每种消息都可以由 2 种方法解码(例如,“11” 可以解码成 “AA” 或 “K”)。
 因此,“1*” 共有 9 * 2 = 18 种解码方法。
 示例 3:
 输入:s = “2*”
 输出:15
 解释:这一条编码消息可以表示 “21”、“22”、“23”、“24”、“25”、“26”、“27”、“28” 或 “29” 中的任意一条。
 “21”、“22”、“23”、“24”、“25” 和 “26” 由 2 种解码方法,但 “27”、“28” 和 “29” 仅有 1 种解码方法。
 因此,“2*” 共有 (6 * 2) + (3 * 1) = 12 + 3 = 15 种解码方法。
 提示:
 1 <= s.length <= 105
 s[i] 是 0 - 9 中的一位数字或字符 ‘*’
分析
时间复杂度:O(nm) n=s.length m = 9(1到9)。
动态规划的细节,方便检查
| 动态规划的状态表示 | dp[j]表示s[0,i) 以 j+'A’结尾的合法串数量。dp[0]是占位符,无意义,请忽略 | 
| 动态规划的转移方程 | 见下文 | 
| 动态规划的初始状态 | 如果是*,dp[1,9]=1,否则dp[s[0]-‘A’]=1 | 
| 动态规划的填表顺序 | i从1到大,确保动态规划的无后效性 | 
| 动态规划的返回值 | 求和 [ 1 , 26 ] j ^{j}_{[1,26]} [1,26]jdp[j] | 
动态规划的转移方程
有两种转移方式:
 新建字符: 当前字符必须是[1,9],前一个字符不限。
 和前面的串最后一个字符结合:
 当前字符:[0,9] 前一字符:1
 或
 当前字符:[0,6] 前一字符 2
代码
封装类
template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{
	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
核心代码
class Solution {
public:
	int numDecodings(string s) {
		vector<C1097Int<>> pre(27);
		if ('*' == s[0])
		{
			for (int i = 1; i <= 9; i++)
			{
				pre[i] += 1;
			}
		}
		else
		{
			pre[s[0] - '0'] += 1;
		}
		for (int i = 1; i < s.length(); i++)
		{
			vector<C1097Int<>> dp(27);
			const auto total = std::accumulate(pre.begin()+1, pre.end(), C1097Int<>());			
			auto Add = [&dp, &pre,&total](const char& ch)
			{
				if ((ch >= '1') && (ch <= '9'))
				{
					dp[ch - '0'] += total;//新字符
				}
				dp[ch - '0' + 10] += pre[1];
				if ((ch >= '0') && (ch <= '6'))
				{
					dp[ch - '0' + 20] += pre[2];
				}
			};
			if ('*' == s[i])
			{
				for (char ch = '1'; ch <= '9'; ch++)
				{
					Add(ch);
				}
			}
			else
			{
				Add(s[i]);
			}
			pre.swap(dp);
		}
		return std::accumulate(pre.begin() + 1, pre.end(), C1097Int<>()).ToInt();
	}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
测试用例
template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}
int main()
{
	string s;
	{
		Solution sln;
		s = "0";
		auto res = sln.numDecodings(s);
		Assert(0, res);
	}
	{
		Solution sln;
		s = "*";
		auto res = sln.numDecodings(s);
		Assert(9, res);
	}
	{
		Solution sln;
		s = "1*";
		auto res = sln.numDecodings(s);
		Assert(18, res);
	}
	{
		Solution sln;
		s = "2*";
		auto res = sln.numDecodings(s);
		Assert(15, res);
	}
	{
		Solution sln;
		s = "*********";
		auto res = sln.numDecodings(s);
		Assert(291868912, res);
	}
	
	{
		Solution sln;
		s = "**3*******";
		auto res = sln.numDecodings(s);
		Assert(351940699, res);
	}
	{
		Solution sln;
		s = "*1*3***4**6**";
		auto res = sln.numDecodings(s);
		Assert(632929394, res);
	}
	{
		Solution sln;
		s = "*1*3***4**6*7*";
		auto res = sln.numDecodings(s);
		Assert(468371306, res);
	}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
改进
修改了三处:
 一,初始化简洁。
 二,total 包括dp[0]。
 三,i从0开始。
 代码更简洁。
class Solution {
public:
	int numDecodings(string s) {
		vector<C1097Int<>> pre(27);
		pre[0] = 1;
		for (int i = 0; i < s.length(); i++)
		{
			vector<C1097Int<>> dp(27);
			const auto total = std::accumulate(pre.begin(), pre.end(), C1097Int<>());			
			auto Add = [&dp, &pre,&total](const char& ch)
			{
				if ((ch >= '1') && (ch <= '9'))
				{
					dp[ch - '0'] += total;//新字符
				}
				dp[ch - '0' + 10] += pre[1];
				if ((ch >= '0') && (ch <= '6'))
				{
					dp[ch - '0' + 20] += pre[2];
				}
			};
			if ('*' == s[i])
			{
				for (char ch = '1'; ch <= '9'; ch++)
				{
					Add(ch);
				}
			}
			else
			{
				Add(s[i]);
			}
			pre.swap(dp);
		}
		return std::accumulate(pre.begin() + 1, pre.end(), C1097Int<>()).ToInt();
	}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
2023年第一版
 class CBigMath
 {
 public:
	 static void AddAssignment(int* dst, const int& iSrc)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
	 }
	 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
		 *dst = (*dst + iSrc1) % s_iMod;
	 }
	 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1, const int& iSrc2)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
		 *dst = (*dst + iSrc1) % s_iMod;
		 *dst = (*dst + iSrc2) % s_iMod;
	 }
	 static void SubAssignment(int* dst, const int& iSrc)
	 {
		 *dst = (s_iMod - iSrc + *dst) % s_iMod;
	 }
	 static int Add(const int& iAdd1, const int& iAdd2)
	 {
		 return (iAdd1 + iAdd2) % s_iMod;
	 }
	 static int Mul(const int& i1, const int& i2)
	 {
		 return((long long)i1 *i2) % s_iMod;
	 }
 private:
	 static const int s_iMod = 1000000007;
 };
 
  class Solution {
 public:
	 int numDecodings(string s) {
		 vector<int> preDp(27);
		 if ('*' == s[0])
		 {
			 for (int i = 1; i < 10; i++)
			 {
				 preDp[i] = 1;
			 }
		 }
		 else if ('0' != s[0])
		 {
			 preDp[s[0] - '0'] = 1;
		 }
		 for (int i = 1; i < s.length(); i++)
		 {
			 vector<int> dp(27);
			 if ('*' == s[i])
			 {
				 for (int j = 1; j < 10; j++)
				 {
					 Test(dp, preDp, j);
				 }
			 }
			 else
			 {
				 Test(dp, preDp, s[i] - '0');
			 }
			 preDp.swap(dp);
		 }
		 int iRet = 0;
		 for (const auto& p : preDp)
		 {
			 CBigMath::AddAssignment(&iRet, p);
		 }
		 return iRet;
	 }
	 void Test(vector<int>& dp, const vector<int>& preDp, int iNum)
	 {
		 if (0 != iNum)
		 {
			 for (int i = 0; i < preDp.size(); i++)
			 {
				 CBigMath::AddAssignment(&dp[iNum], preDp[i]);
			 }
		 }
		 CBigMath::AddAssignment(&dp[10 + iNum], preDp[1]);
		 if (iNum <= 6)
		 {
			 CBigMath::AddAssignment(&dp[20 + iNum], preDp[2]);
		 }
	 }
 };
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
2023年1月第2版
class CBigMath
 {
 public:
 static void AddAssignment(int* dst, const int& iSrc)
 {
 *dst = (dst + iSrc) % s_iMod;
 }
 static void AddAssignment(int dst, const int& iSrc, const int& iSrc1)
 {
 *dst = (*dst + iSrc) % s_iMod;
 *dst = (dst + iSrc1) % s_iMod;
 }
 static void AddAssignment(int dst, const int& iSrc, const int& iSrc1, const int& iSrc2)
 {
 *dst = (*dst + iSrc) % s_iMod;
 *dst = (*dst + iSrc1) % s_iMod;
 *dst = (dst + iSrc2) % s_iMod;
 }
 static void SubAssignment(int dst, const int& iSrc)
 {
 *dst = (s_iMod - iSrc + *dst) % s_iMod;
 }
 static int Add(const int& iAdd1, const int& iAdd2)
 {
 return (iAdd1 + iAdd2) % s_iMod;
 }
 static int Mul(const int& i1, const int& i2)
 {
 return((long long)i1 *i2) % s_iMod;
 }
 private:
 static const int s_iMod = 1000000007;
 };
class Solution {
 public:
 int numDecodings(string s) {
 vector preDp(27);
 if (‘’ == s[0])
 {
 for (int i = 1; i < 10; i++)
 {
 preDp[i] = 1;
 }
 }
 else if (‘0’ != s[0])
 {
 preDp[s[0] - ‘0’] = 1;
 }
 for (int i = 1; i < s.length(); i++)
 {
 vector dp(27);
 if ('’ == s[i])
 {
 int iTotal = GetTotal(preDp);
 for (int j = 1; j < 10; j++)
 {
 Test(dp, preDp, iTotal,j);
 }
 }
 else
 {
 int iTotal = GetTotal(preDp);
 Test(dp, preDp, iTotal,s[i] - ‘0’);
 }
 preDp.swap(dp);
 } 
 return GetTotal(preDp);
 }
 int GetTotal(const vector& preDp)
 {
 int iRet = 0;
 for (const auto& p : preDp)
 {
 CBigMath::AddAssignment(&iRet, p);
 }
 return iRet;
 }
 void Test(vector& dp, const vector& preDp,int iTotal, int iNum)
 {
 if (0 != iNum)
 {
 CBigMath::AddAssignment(&dp[iNum], iTotal);
 }
 CBigMath::AddAssignment(&dp[10 + iNum], preDp[1]);
 if (iNum <= 6)
 {
 CBigMath::AddAssignment(&dp[20 + iNum], preDp[2]);
 }
 }
 };

扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
 https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
 https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
 https://download.csdn.net/download/he_zhidan/88348653
| 我想对大家说的话 | 
|---|
| 闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 | 
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 | 
| 如果程序是一条龙,那算法就是他的是睛 | 
测试环境
操作系统:win7 开发环境: VS2019 C++17
 或者 操作系统:win10 开发环境: VS2022 C++17
 如无特殊说明,本算法用**C++**实现。

 
           QQ群名片
              QQ群名片
             
         
                                    
评论记录:
回复评论: