首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

【动态规划】LeetCode2552:优化了6版的1324模式

  • 25-02-22 04:20
  • 2343
  • 12237
blog.csdn.net

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
动态规划

本题其它解法

C++前缀和算法的应用:统计上升四元组

类似题解法

包括题目及代码C++二分查找算法:132 模式解法一枚举3
C++二分查找算法:132 模式解法二枚举2
代码简洁C++二分查找算法:132 模式解法三枚举1
性能最佳C++单调向量算法:132 模式解法三枚举1
代码更简洁C++二分查找算法:132模式枚举3简洁版
代码简洁,性能优越C++单调向量:132模式枚举1简洁版

题目

给你一个长度为 n 下标从 0 开始的整数数组 nums ,它包含 1 到 n 的所有数字,请你返回上升四元组的数目。
如果一个四元组 (i, j, k, l) 满足以下条件,我们称它是上升的:
0 <= i < j < k < l < n 且
nums[i] < nums[k] < nums[j] < nums[l] 。
示例 1:
输入:nums = [1,3,2,4,5]
输出:2
解释:

  • 当 i = 0 ,j = 1 ,k = 2 且 l = 3 时,有 nums[i] < nums[k] < nums[j] < nums[l] 。
  • 当 i = 0 ,j = 1 ,k = 2 且 l = 4 时,有 nums[i] < nums[k] < nums[j] < nums[l] 。
    没有其他的四元组,所以我们返回 2 。
    示例 2:
    输入:nums = [1,2,3,4]
    输出:0
    解释:只存在一个四元组 i = 0 ,j = 1 ,k = 2 ,l = 3 ,但是 nums[j] < nums[k] ,所以我们返回 0 。
    参数范围:
    4 <= nums.length <= 4000
    1 <= nums[i] <= nums.length
    nums 中所有数字 互不相同 ,nums 是一个排列。

第一版

分析

1324模式,第1的小在最前面,其次是第3小,再次是第2小的,最后是第4小的。

变量解释

v21v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
v32v32[i3][i2]=k,表示以num[i3]为3以nums[x]为2 组成的132模式的数量是k,x取[0,i2)

代码

class Solution {
public:
long long countQuadruplets(vector& nums) {
m_c = nums.size();
//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
vector v21(m_c,vector(m_c+1));
for (int i2 = 0; i2 < m_c; i2++)
{
for (int i1 = 0; i1 < i2; i1++)
{
v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);
}
}
vector v32(m_c, vector(m_c + 1));
for (int i3 = 0; i3 < m_c; i3++)
{
for (int i2 = i3 + 1; i2 < m_c; i2++)
{
v32[i3][i2 + 1] = v32[i3][i2];
if (nums[i3] > nums[i2])
{
v32[i3][i2 + 1] += v21[i2][i3];
}
}
}
long long llRet = 0;
for (int i3 = 0; i3 < m_c; i3++)
{
for (int i4 = i3 + 1; i4 < m_c; i4++)
{
if (nums[i3] < nums[i4])
{
llRet += v32[i3][i4];
}
}
}
return llRet;
}
int m_c;
};

测试用例

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		assert(v1[i] == v2[i]);
	}
}

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

int main()
{
	Solution slu;
	vector<int> nums ;
	long long res;
	nums = { 1, 3, 2, 4, 5 };
	res = slu.countQuadruplets(nums);
	Assert(2LL, res);
	nums = { 1, 2,3,4 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 4,3,2,1 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 4,3,2,6,5,1 };
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	nums = { 1,3,2,4 };
	res = slu.countQuadruplets(nums);
	Assert(1LL, res);
	nums = { 2,1,4,3,5 };
	res = slu.countQuadruplets(nums);
	Assert(2LL, res);
	nums.clear();
	for (int i = 0; i < 4000; i++)
	{
		nums.emplace_back(i + 1);
	}
	res = slu.countQuadruplets(nums);
	Assert(0LL, res);
	//CConsole::Out(res);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

第二版

三步是如此相似,也许可以合并。第一步的循环似乎不同。我们把第一步的第一层循环换到第二层就更相似了。修改后的第一步:

	for (int i1 = 0; i1 < m_c ; i1++)		
		{
			for (int i2 = i1+1; i2 < m_c; i2++)
			{
				v21[i2][i1 + 1] = v21[i2][i1] + (nums[i1] < nums[i2]);
			}
		}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

第三版

第一层 的循环变量改成i,第一层的循环变量改成j。

class Solution {
public:
	long long countQuadruplets(vector<int>& nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v21(m_c,vector<int>(m_c+1));
		for (int i = 0; i < m_c ; i++)		
		{
			for (int j = i+1; j < m_c; j++)
			{
				v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);
			}
		}
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		for (int i = 0; i < m_c; i++)
		{
			for (int j = i + 1; j < m_c; j++)
			{
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j][i];
				}
			}
		}
		long long llRet = 0;
		for (int i = 0; i < m_c; i++)
		{
			for (int j = i + 1; j < m_c; j++)
			{
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
			}
		}
		return llRet;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

第四版

三轮循环合并。

class Solution {
public:
	long long countQuadruplets(vector<int>& nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v21(m_c,vector<int>(m_c+1));
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		long long llRet = 0;
		for (int i = 0; i < m_c ; i++)		
		{
			for (int j = i+1; j < m_c; j++)
			{
				v21[j][i + 1] = v21[j][i] + (nums[i] < nums[j]);
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j][i];
				}
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
			}
		}
		return llRet;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

第五版

v2 只用到三处, v21[j][i + 1] 和 v21[j][i],可以简化成一维变量。
优化后,代码如下:

class Solution {
public:
	long long countQuadruplets(vector<int>& nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		vector<vector<int>> v32(m_c, vector<int>(m_c + 1));
		long long llRet = 0;
		vector<int> v21(m_c);
		for (int i = 0; i < m_c ; i++)		
		{			
			for (int j = i+1; j < m_c; j++)
			{		
				v32[i][j + 1] = v32[i][j];
				if (nums[i] > nums[j])
				{
					v32[i][j + 1] += v21[j];
				}
				if (nums[i] < nums[j])
				{
					llRet += v32[i][j];
				}
				v21[j] +=  (nums[i] < nums[j]);
			}
		}
		return llRet;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

第六版

v32只用到v32[i][j + 1] v32[i][j],我们可以简化成一个变量i32,i发生变化的时候赋初值0。

class Solution {
public:
	long long countQuadruplets(vector<int>& nums) {
		m_c = nums.size();
		//v21[i2][i1] = k,表示 nums[i2]和nums[x]组成12模式的数量是k,x取值范围[0,i1)
		long long llRet = 0;
		vector<int> v21(m_c);
		for (int i = 0; i < m_c ; i++)		
		{	
			int i32 = 0;
			for (int j = i+1; j < m_c; j++)
			{					
				if (nums[i] < nums[j])
				{
					llRet += i32;
				}
				if (nums[i] > nums[j])
				{
					i32 += v21[j];
				}
				v21[j] +=  (nums[i] < nums[j]);
			}
		}
		return llRet;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览55804 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/134674006"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top