首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

背包问题汇总

  • 25-02-22 03:01
  • 2936
  • 6305
blog.csdn.net

本文涉及知识点

动态规划汇总
状态机dp

01背包

有n件物品,体积分别是v[i],价值分别是w[i],有个包的容积是bv。如何选择物品使得,在总体积不超过vb的前提下,让总价值最大。

动态规划的状态表示

dp[i][j] 表示处理完前i件物品,占用体积是j的最大价值。
如果不用滚动向量,空间复杂度是O(n × \times ×bv)

动态规划的状态方程

如果选择选择标为i的物品:
MaxSelf(dp[i+1][j+v[i]] ,dp[i][j]+w[i])
如果不选择下标为i的物品:
MaxSelf(dp[i+1][j],dp[i][j])
转移方程的时间复杂度为O(1)
故总时间复杂度为:O(n × \times ×bv)

动态规划的初始状态

全为0。

动态规划的填表顺序

依次枚举各物品。

动态规划的返回值

dp.back()的最大值。

多重背包、完全背包转化成01背包

多重背包:每件物品有多件n[i]。
完全背包:每件物品无限。
完全背包:我们可以把物品拆分1 + 2 + 4+ 8 + ⋯ \cdots ⋯ 这样时间复杂是O(n × \times ×bv × \times × logmax)
多重背包假定某个物品有x件:
拆分成:1+2+4+8 + ⋯ \cdots ⋯ + y
y = x - (1 + 2+4+8 ⋯ \cdots ⋯) ,y > 0,y尽可能得小 。
我们来证明,这样可以选择:[0,x]
令y前面有i 项: 则通过选或不选前i项,范围为:[0,2i)
y < 2i
如果选择y,则范围为:[y,y+2i)
两者结合就是:[0,y+2i)
y+2i-1就是x,故可以表示[0,x]

完全背包

dp[i][j] = max(dp[i][j-v[i]]+w[i],dp[i-1][j])
分别对应两种情况:
一,选择物品i。只需要考虑选择一个,因为dp[i][j-v[i]] dp[i][j-v[i]*2] ⋯ \cdots ⋯ 可能也选择了一个。
二,不选择物品i。
时间复杂度为:O(n × \times ×bv)

单调双向队列及多重背包

for(int j1 = 0 ; j1 < v[i];j1++)
for(int j = j1; j <= bv; j+= j1 ){
⋯ \cdots ⋯
}
队列que中记录如下数据:{pre[j1],pre[j1+v[i]]-w[i],pre[j1+(v[i]-v[i])*2 ⋯ \cdots ⋯ }
max(que)+ ( j- j1)/v[i] *w[i] 就是dp[i][j]。
问题一:
( j- j1)/v[i] > n[i] ,就需要队首出队,直到 ( j- j1)/v[i] == n[i]。
问题二,如何求最大值:
前面的数据先出队,如果前面的数据小于等于后面的数据,则前面的数据被淘汰了。
数据淘汰后,队列的数据降序,也就是队首数据最大。

例题

背包
定界01背包
【动态规划】879. 盈利计划
完全背包
【动态规划】【C++算法】2188. 完成比赛的最少时间
【动态规划】【数学】【C++算法】1449. 数位成本和为目标值的最大数字
类似多重背包
【动态规划】【同余前缀和】【多重背包】2902. 和带限制的子多重集合的数目

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章知识点与官方知识档案匹配,可进一步学习相关知识
算法技能树首页概览61211 人正在系统学习中
群中有博文配套源码
QQ群名片
注:本文转载自blog.csdn.net的闻缺陷则喜何志丹的文章"https://blog.csdn.net/he_zhidan/article/details/138039996"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top