首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C# OpenCvSharp DNN UNet 推理

  • 25-02-19 03:42
  • 4615
  • 10087
blog.csdn.net

目录

效果

模型

项目

代码

下载


效果

模型

Inputs
-------------------------
name:data
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------

Outputs
-------------------------
name:predict
tensor:Float[1, 2, 256, 256]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Drawing;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;

        int inpHeight;
        int inpWidth;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            string modelTxt = "model/unet.prototxt";
            string modelBin = "model/unet.caffemodel";

            inpHeight = 256;
            inpWidth = 256;

            opencv_net = CvDnn.ReadNetFromCaffe(modelTxt, modelBin);

            image_path = "test_img/person.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            Mat src = new Mat(image_path);

            int max_image_length = src.Cols > src.Rows ? src.Cols : src.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, src.Cols, src.Rows);
            src.CopyTo(new Mat(max_image, roi));

            Mat resize_image = max_image.Resize(new OpenCvSharp.Size(256, 256));

            BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(127.5, 127.5, 127.5), true, false);

            //float* ptr = (float*)BN_image.Data;
            //for (int i = 0; i < 10; i++)
            //{
            //    Console.WriteLine(ptr[i]);
            //}

            opencv_net.SetInput(BN_image, "data");


            dt1 = DateTime.Now;

            Mat detection = opencv_net.Forward("predict");


            //float* ptr2 = (float*)detection.Data;
            //for (int i = 0; i < 10; i++)
            //{
            //    Console.WriteLine(ptr2[i]);
            //}

            dt2 = DateTime.Now;

            //得到的输出是一个四维的mat格式数据,大小为[1,2, 256, 256]
            //首先将他reshape,设置成一通道,512行,256列,其中前256行与后256行是互补关系,对应位置相加都为1
            //前256行为背景的概率,后256行为人像的概率
            Mat newMat = detection.Reshape(1, 512);
            //获取人像概率矩阵
            newMat = newMat.RowRange(256, 512);

            Mat result = new Mat();
            newMat.ConvertTo(result, MatType.CV_8U, 255.0);

            Cv2.Threshold(result, result, 127, 255, ThresholdTypes.Binary);

            Mat result2 = Mat.Zeros(256, 256, MatType.CV_8UC3) * 255;

            resize_image.CopyTo(result2, result);

            Cv2.ImShow("黑白", result);
            Cv2.ImShow("扣取", result2);

            pictureBox2.Image = new Bitmap(result2.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}


/*
Inputs
-------------------------
name:data
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------

Outputs
-------------------------
name:predict
tensor:Float[1, 2, 256, 256]
---------------------------------------------------------------
 */

  1. using OpenCvSharp;
  2. using OpenCvSharp.Dnn;
  3. using System;
  4. using System.Drawing;
  5. using System.Windows.Forms;
  6. namespace OpenCvSharp_DNN_Demo
  7. {
  8. public partial class frmMain : Form
  9. {
  10. public frmMain()
  11. {
  12. InitializeComponent();
  13. }
  14. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  15. string image_path = "";
  16. DateTime dt1 = DateTime.Now;
  17. DateTime dt2 = DateTime.Now;
  18. string modelpath;
  19. int inpHeight;
  20. int inpWidth;
  21. Net opencv_net;
  22. Mat BN_image;
  23. Mat image;
  24. Mat result_image;
  25. private void button1_Click(object sender, EventArgs e)
  26. {
  27. OpenFileDialog ofd = new OpenFileDialog();
  28. ofd.Filter = fileFilter;
  29. if (ofd.ShowDialog() != DialogResult.OK) return;
  30. pictureBox1.Image = null;
  31. pictureBox2.Image = null;
  32. textBox1.Text = "";
  33. image_path = ofd.FileName;
  34. pictureBox1.Image = new Bitmap(image_path);
  35. image = new Mat(image_path);
  36. }
  37. private void Form1_Load(object sender, EventArgs e)
  38. {
  39. string modelTxt = "model/unet.prototxt";
  40. string modelBin = "model/unet.caffemodel";
  41. inpHeight = 256;
  42. inpWidth = 256;
  43. opencv_net = CvDnn.ReadNetFromCaffe(modelTxt, modelBin);
  44. image_path = "test_img/person.jpg";
  45. pictureBox1.Image = new Bitmap(image_path);
  46. }
  47. private unsafe void button2_Click(object sender, EventArgs e)
  48. {
  49. if (image_path == "")
  50. {
  51. return;
  52. }
  53. textBox1.Text = "检测中,请稍等……";
  54. pictureBox2.Image = null;
  55. Application.DoEvents();
  56. Mat src = new Mat(image_path);
  57. int max_image_length = src.Cols > src.Rows ? src.Cols : src.Rows;
  58. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  59. Rect roi = new Rect(0, 0, src.Cols, src.Rows);
  60. src.CopyTo(new Mat(max_image, roi));
  61. Mat resize_image = max_image.Resize(new OpenCvSharp.Size(256, 256));
  62. BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(127.5, 127.5, 127.5), true, false);
  63. //float* ptr = (float*)BN_image.Data;
  64. //for (int i = 0; i < 10; i++)
  65. //{
  66. // Console.WriteLine(ptr[i]);
  67. //}
  68. opencv_net.SetInput(BN_image, "data");
  69. dt1 = DateTime.Now;
  70. Mat detection = opencv_net.Forward("predict");
  71. //float* ptr2 = (float*)detection.Data;
  72. //for (int i = 0; i < 10; i++)
  73. //{
  74. // Console.WriteLine(ptr2[i]);
  75. //}
  76. dt2 = DateTime.Now;
  77. //得到的输出是一个四维的mat格式数据,大小为[1,2, 256, 256]
  78. //首先将他reshape,设置成一通道,512行,256列,其中前256行与后256行是互补关系,对应位置相加都为1
  79. //前256行为背景的概率,后256行为人像的概率
  80. Mat newMat = detection.Reshape(1, 512);
  81. //获取人像概率矩阵
  82. newMat = newMat.RowRange(256, 512);
  83. Mat result = new Mat();
  84. newMat.ConvertTo(result, MatType.CV_8U, 255.0);
  85. Cv2.Threshold(result, result, 127, 255, ThresholdTypes.Binary);
  86. Mat result2 = Mat.Zeros(256, 256, MatType.CV_8UC3) * 255;
  87. resize_image.CopyTo(result2, result);
  88. Cv2.ImShow("黑白", result);
  89. Cv2.ImShow("扣取", result2);
  90. pictureBox2.Image = new Bitmap(result2.ToMemoryStream());
  91. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
  92. }
  93. private void pictureBox2_DoubleClick(object sender, EventArgs e)
  94. {
  95. Common.ShowNormalImg(pictureBox2.Image);
  96. }
  97. private void pictureBox1_DoubleClick(object sender, EventArgs e)
  98. {
  99. Common.ShowNormalImg(pictureBox1.Image);
  100. }
  101. }
  102. }
  103. /*
  104. Inputs
  105. -------------------------
  106. name:data
  107. tensor:Float[1, 3, 256, 256]
  108. ---------------------------------------------------------------
  109. Outputs
  110. -------------------------
  111. name:predict
  112. tensor:Float[1, 2, 256, 256]
  113. ---------------------------------------------------------------
  114. */

下载

源码下载

天天代码码天天
微信公众号
.NET 人工智能实践
注:本文转载自blog.csdn.net的天天代码码天天的文章"https://lw112190.blog.csdn.net/article/details/143351944"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top