首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C# OnnxRuntime yolov11 detection

  • 25-02-19 03:41
  • 4206
  • 11427
blog.csdn.net

目录

说明

效果

模型信息

项目

代码

下载


说明

官网地址:

https://github.com/ultralytics/ultralytics

效果

模型信息

Model Properties
-------------------------
date:2024-10-06T16:52:12.968917
description:Ultralytics YOLO11n model trained on /usr/src/ultralytics/ultralytics/cfg/datasets/coco.yaml
author:Ultralytics
version:8.3.5
task:detect
license:AGPL-3.0 License (https://ultralytics.com/license)
docs:https://docs.ultralytics.com
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = ""; 
        string model_path;
        string classer_path;
        public string[] class_names;
        public int class_num;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int input_height;
        int input_width;
        float ratio_height;
        float ratio_width;

        InferenceSession onnx_session;

        int box_num;
        float conf_threshold;
        float nms_threshold;

        ///


        /// 选择图片
        ///

        ///
        ///
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        ///


        /// 推理
        ///

        ///
        ///
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            Mat image = new Mat(image_path);
            
            //图片缩放
            int height = image.Rows;
            int width = image.Cols;
            Mat temp_image = image.Clone();
            if (height > input_height || width > input_width)
            {
                float scale = Math.Min((float)input_height / height, (float)input_width / width);
                OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
                Cv2.Resize(image, temp_image, new_size);
            }
            ratio_height = (float)height / temp_image.Rows;
            ratio_width = (float)width / temp_image.Cols;
            Mat input_img = new Mat();
            Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);

            //Cv2.ImShow("input_img", input_img);

            //输入Tensor
            Tensor input_tensor = new DenseTensor(new[] { 1, 3, 640, 640 });
            for (int y = 0; y < input_img.Height; y++)
            {
                for (int x = 0; x < input_img.Width; x++)
                {
                    input_tensor[0, 0, y, x] = input_img.At(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = input_img.At(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = input_img.At(y, x)[2] / 255f;
                }
            }

            List input_container = new List
            {
                NamedOnnxValue.CreateFromTensor("images", input_tensor)
            };

            //推理
            dt1 = DateTime.Now;
            var ort_outputs = onnx_session.Run(input_container).ToArray();
            dt2 = DateTime.Now;

            float[] data = Transpose(ort_outputs[0].AsTensor().ToArray(), 4 + class_num, box_num);

            float[] confidenceInfo = new float[class_num];
            float[] rectData = new float[4];

            List detResults = new List();

            for (int i = 0; i < box_num; i++)
            {
                Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
                Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);

                float score = confidenceInfo.Max(); // 获取最大值

                int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置

                int _centerX = (int)(rectData[0] * ratio_width);
                int _centerY = (int)(rectData[1] * ratio_height);
                int _width = (int)(rectData[2] * ratio_width);
                int _height = (int)(rectData[3] * ratio_height);

                detResults.Add(new DetectionResult(
                   maxIndex,
                   class_names[maxIndex],
                   new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
                   score));
            }

            //NMS
            CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
            detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;
        }

        ///


        ///窗体加载
        ///

        ///
        ///
        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/yolo11n.onnx";

            //创建输出会话,用于输出模型读取信息
            SessionOptions options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            input_height = 640;
            input_width = 640;

            box_num = 8400;
            conf_threshold = 0.25f;
            nms_threshold = 0.5f;

            classer_path = "model/lable.txt";
            class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
            class_num = class_names.Length;

            image_path = "test_img/zidane.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        ///


        /// 保存
        ///

        ///
        ///
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            SaveFileDialog sdf = new SaveFileDialog();
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            ShowNormalImg(pictureBox2.Image);
        }

        public  void ShowNormalImg(Image img)
        {
            if (img == null) return;

            frmShow frm = new frmShow();

            frm.Width = Screen.PrimaryScreen.Bounds.Width;
            frm.Height = Screen.PrimaryScreen.Bounds.Height;

            if (frm.Width > img.Width)
            {
                frm.Width = img.Width;
            }

            if (frm.Height > img.Height)
            {
                frm.Height = img.Height;
            }

            bool b = frm.richTextBox1.ReadOnly;
            Clipboard.SetDataObject(img, true);
            frm.richTextBox1.ReadOnly = false;
            frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
            frm.richTextBox1.ReadOnly = b;

            frm.ShowDialog();

        }

        public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
        {
            float[] transposedTensorData = new float[tensorData.Length];

            fixed (float* pTensorData = tensorData)
            {
                fixed (float* pTransposedData = transposedTensorData)
                {
                    for (int i = 0; i < rows; i++)
                    {
                        for (int j = 0; j < cols; j++)
                        {
                            int index = i * cols + j;
                            int transposedIndex = j * rows + i;
                            pTransposedData[transposedIndex] = pTensorData[index];
                        }
                    }
                }
            }
            return transposedTensorData;
        }
    }

    public class DetectionResult
    {
        public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
        {
            this.ClassId = ClassId;
            this.Confidence = Confidence;
            this.Rect = Rect;
            this.Class = Class;
        }

        public string Class { get; set; }

        public int ClassId { get; set; }

        public float Confidence { get; set; }

        public Rect Rect { get; set; }

    }

}
 

  1. using Microsoft.ML.OnnxRuntime;
  2. using Microsoft.ML.OnnxRuntime.Tensors;
  3. using OpenCvSharp;
  4. using OpenCvSharp.Dnn;
  5. using System;
  6. using System.Collections.Generic;
  7. using System.Drawing;
  8. using System.Drawing.Imaging;
  9. using System.IO;
  10. using System.Linq;
  11. using System.Text;
  12. using System.Windows.Forms;
  13. namespace Onnx_Demo
  14. {
  15. public partial class Form1 : Form
  16. {
  17. public Form1()
  18. {
  19. InitializeComponent();
  20. }
  21. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  22. string image_path = "";
  23. string model_path;
  24. string classer_path;
  25. public string[] class_names;
  26. public int class_num;
  27. DateTime dt1 = DateTime.Now;
  28. DateTime dt2 = DateTime.Now;
  29. int input_height;
  30. int input_width;
  31. float ratio_height;
  32. float ratio_width;
  33. InferenceSession onnx_session;
  34. int box_num;
  35. float conf_threshold;
  36. float nms_threshold;
  37. /// <summary>
  38. /// 选择图片
  39. /// </summary>
  40. /// <param name="sender"></param>
  41. /// <param name="e"></param>
  42. private void button1_Click(object sender, EventArgs e)
  43. {
  44. OpenFileDialog ofd = new OpenFileDialog();
  45. ofd.Filter = fileFilter;
  46. if (ofd.ShowDialog() != DialogResult.OK) return;
  47. pictureBox1.Image = null;
  48. image_path = ofd.FileName;
  49. pictureBox1.Image = new Bitmap(image_path);
  50. textBox1.Text = "";
  51. pictureBox2.Image = null;
  52. }
  53. /// <summary>
  54. /// 推理
  55. /// </summary>
  56. /// <param name="sender"></param>
  57. /// <param name="e"></param>
  58. private void button2_Click(object sender, EventArgs e)
  59. {
  60. if (image_path == "")
  61. {
  62. return;
  63. }
  64. button2.Enabled = false;
  65. pictureBox2.Image = null;
  66. textBox1.Text = "";
  67. Application.DoEvents();
  68. Mat image = new Mat(image_path);
  69. //图片缩放
  70. int height = image.Rows;
  71. int width = image.Cols;
  72. Mat temp_image = image.Clone();
  73. if (height > input_height || width > input_width)
  74. {
  75. float scale = Math.Min((float)input_height / height, (float)input_width / width);
  76. OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
  77. Cv2.Resize(image, temp_image, new_size);
  78. }
  79. ratio_height = (float)height / temp_image.Rows;
  80. ratio_width = (float)width / temp_image.Cols;
  81. Mat input_img = new Mat();
  82. Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);
  83. //Cv2.ImShow("input_img", input_img);
  84. //输入Tensor
  85. Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
  86. for (int y = 0; y < input_img.Height; y++)
  87. {
  88. for (int x = 0; x < input_img.Width; x++)
  89. {
  90. input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f;
  91. input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f;
  92. input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f;
  93. }
  94. }
  95. List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
  96. {
  97. NamedOnnxValue.CreateFromTensor("images", input_tensor)
  98. };
  99. //推理
  100. dt1 = DateTime.Now;
  101. var ort_outputs = onnx_session.Run(input_container).ToArray();
  102. dt2 = DateTime.Now;
  103. float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);
  104. float[] confidenceInfo = new float[class_num];
  105. float[] rectData = new float[4];
  106. List<DetectionResult> detResults = new List<DetectionResult>();
  107. for (int i = 0; i < box_num; i++)
  108. {
  109. Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
  110. Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);
  111. float score = confidenceInfo.Max(); // 获取最大值
  112. int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置
  113. int _centerX = (int)(rectData[0] * ratio_width);
  114. int _centerY = (int)(rectData[1] * ratio_height);
  115. int _width = (int)(rectData[2] * ratio_width);
  116. int _height = (int)(rectData[3] * ratio_height);
  117. detResults.Add(new DetectionResult(
  118. maxIndex,
  119. class_names[maxIndex],
  120. new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
  121. score));
  122. }
  123. //NMS
  124. CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
  125. detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();
  126. //绘制结果
  127. Mat result_image = image.Clone();
  128. foreach (DetectionResult r in detResults)
  129. {
  130. Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
  131. Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
  132. }
  133. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  134. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
  135. button2.Enabled = true;
  136. }
  137. /// <summary>
  138. ///窗体加载
  139. /// </summary>
  140. /// <param name="sender"></param>
  141. /// <param name="e"></param>
  142. private void Form1_Load(object sender, EventArgs e)
  143. {
  144. model_path = "model/yolo11n.onnx";
  145. //创建输出会话,用于输出模型读取信息
  146. SessionOptions options = new SessionOptions();
  147. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
  148. options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
  149. // 创建推理模型类,读取模型文件
  150. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
  151. input_height = 640;
  152. input_width = 640;
  153. box_num = 8400;
  154. conf_threshold = 0.25f;
  155. nms_threshold = 0.5f;
  156. classer_path = "model/lable.txt";
  157. class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
  158. class_num = class_names.Length;
  159. image_path = "test_img/zidane.jpg";
  160. pictureBox1.Image = new Bitmap(image_path);
  161. }
  162. /// <summary>
  163. /// 保存
  164. /// </summary>
  165. /// <param name="sender"></param>
  166. /// <param name="e"></param>
  167. private void button3_Click(object sender, EventArgs e)
  168. {
  169. if (pictureBox2.Image == null)
  170. {
  171. return;
  172. }
  173. Bitmap output = new Bitmap(pictureBox2.Image);
  174. SaveFileDialog sdf = new SaveFileDialog();
  175. sdf.Title = "保存";
  176. sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
  177. if (sdf.ShowDialog() == DialogResult.OK)
  178. {
  179. switch (sdf.FilterIndex)
  180. {
  181. case 1:
  182. {
  183. output.Save(sdf.FileName, ImageFormat.Jpeg);
  184. break;
  185. }
  186. case 2:
  187. {
  188. output.Save(sdf.FileName, ImageFormat.Png);
  189. break;
  190. }
  191. case 3:
  192. {
  193. output.Save(sdf.FileName, ImageFormat.Bmp);
  194. break;
  195. }
  196. case 4:
  197. {
  198. output.Save(sdf.FileName, ImageFormat.Emf);
  199. break;
  200. }
  201. case 5:
  202. {
  203. output.Save(sdf.FileName, ImageFormat.Exif);
  204. break;
  205. }
  206. case 6:
  207. {
  208. output.Save(sdf.FileName, ImageFormat.Gif);
  209. break;
  210. }
  211. case 7:
  212. {
  213. output.Save(sdf.FileName, ImageFormat.Icon);
  214. break;
  215. }
  216. case 8:
  217. {
  218. output.Save(sdf.FileName, ImageFormat.Tiff);
  219. break;
  220. }
  221. case 9:
  222. {
  223. output.Save(sdf.FileName, ImageFormat.Wmf);
  224. break;
  225. }
  226. }
  227. MessageBox.Show("保存成功,位置:" + sdf.FileName);
  228. }
  229. }
  230. private void pictureBox1_DoubleClick(object sender, EventArgs e)
  231. {
  232. ShowNormalImg(pictureBox1.Image);
  233. }
  234. private void pictureBox2_DoubleClick(object sender, EventArgs e)
  235. {
  236. ShowNormalImg(pictureBox2.Image);
  237. }
  238. public void ShowNormalImg(Image img)
  239. {
  240. if (img == null) return;
  241. frmShow frm = new frmShow();
  242. frm.Width = Screen.PrimaryScreen.Bounds.Width;
  243. frm.Height = Screen.PrimaryScreen.Bounds.Height;
  244. if (frm.Width > img.Width)
  245. {
  246. frm.Width = img.Width;
  247. }
  248. if (frm.Height > img.Height)
  249. {
  250. frm.Height = img.Height;
  251. }
  252. bool b = frm.richTextBox1.ReadOnly;
  253. Clipboard.SetDataObject(img, true);
  254. frm.richTextBox1.ReadOnly = false;
  255. frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
  256. frm.richTextBox1.ReadOnly = b;
  257. frm.ShowDialog();
  258. }
  259. public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
  260. {
  261. float[] transposedTensorData = new float[tensorData.Length];
  262. fixed (float* pTensorData = tensorData)
  263. {
  264. fixed (float* pTransposedData = transposedTensorData)
  265. {
  266. for (int i = 0; i < rows; i++)
  267. {
  268. for (int j = 0; j < cols; j++)
  269. {
  270. int index = i * cols + j;
  271. int transposedIndex = j * rows + i;
  272. pTransposedData[transposedIndex] = pTensorData[index];
  273. }
  274. }
  275. }
  276. }
  277. return transposedTensorData;
  278. }
  279. }
  280. public class DetectionResult
  281. {
  282. public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
  283. {
  284. this.ClassId = ClassId;
  285. this.Confidence = Confidence;
  286. this.Rect = Rect;
  287. this.Class = Class;
  288. }
  289. public string Class { get; set; }
  290. public int ClassId { get; set; }
  291. public float Confidence { get; set; }
  292. public Rect Rect { get; set; }
  293. }
  294. }

下载

源码下载

天天代码码天天
微信公众号
.NET 人工智能实践
注:本文转载自blog.csdn.net的天天代码码天天的文章"https://lw112190.blog.csdn.net/article/details/142729426"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top