首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C# OpenCV 部署RecRecNet广角图像畸变矫正

  • 25-02-19 03:21
  • 2546
  • 11369
blog.csdn.net

C# OpenCV 部署RecRecNet广角图像畸变矫正

目录

说明

效果

模型信息

项目

代码

下载


说明

ICCV2023 - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline Model and DoF-based Curriculum Learning

参考:

https://github.com/KangLiao929/RecRecNet

https://github.com/hpc203/recrecnet-opencv-dnn

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 162]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpHeight;
        int inpWidth;
        string modelpath;

        int grid_h = 8;
        int grid_w = 8;
        Mat grid;
        Mat W_inv;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/model_deploy.onnx";

            inpHeight = 256;
            inpWidth = 256;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            Common.get_norm_rigid_mesh_inv_grid(ref grid, ref W_inv, inpHeight, inpWidth, grid_h, grid_w);

            image_path = "test_img/10.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);
            dt1 = DateTime.Now;

            Mat img = new Mat();

            Cv2.Resize(image, img, new OpenCvSharp.Size(inpWidth, inpHeight));

            img.ConvertTo(img, MatType.CV_32FC3, 1.0f / 127.5f, -1.0f);

            BN_image = CvDnn.BlobFromImage(img);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            float* offset = (float*)outs[0].Data;

            Mat tp = new Mat();
            Mat ori_mesh_np_x = new Mat();
            Mat ori_mesh_np_y = new Mat();
            Common.get_ori_rigid_mesh_tp(tp, ori_mesh_np_x, ori_mesh_np_y, offset, inpHeight, inpWidth, grid_h, grid_w);
            Mat T = W_inv * tp;   
            T = T.T();    

            Mat T_g = T * grid;

            Mat output_tps = Common._interpolate(BN_image, T_g, new OpenCvSharp.Size(inpWidth, inpHeight));
            Mat rectangling_np = (output_tps + 1) * 127.5;
            rectangling_np.ConvertTo(rectangling_np, MatType.CV_8UC3);
            Mat input_np = (img + 1) * 127.5;

            List outputs = new List();
            outputs.Add(rectangling_np);
            outputs.Add(input_np);
            outputs.Add(ori_mesh_np_x);
            outputs.Add(ori_mesh_np_y);

            Mat input_with_mesh = Common.draw_mesh_on_warp(outputs[1], outputs[2], outputs[3]);

            Cv2.CvtColor(outputs[0], outputs[0], ColorConversionCodes.BGR2RGB);

            Cv2.ImShow("mesh", input_with_mesh);

            result_image = outputs[0].Clone();
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}
 

  1. using OpenCvSharp;
  2. using OpenCvSharp.Dnn;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Drawing;
  6. using System.Linq;
  7. using System.Windows.Forms;
  8. namespace OpenCvSharp_DNN_Demo
  9. {
  10. public partial class frmMain : Form
  11. {
  12. public frmMain()
  13. {
  14. InitializeComponent();
  15. }
  16. string fileFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  17. string image_path = "";
  18. DateTime dt1 = DateTime.Now;
  19. DateTime dt2 = DateTime.Now;
  20. int inpHeight;
  21. int inpWidth;
  22. string modelpath;
  23. int grid_h = 8;
  24. int grid_w = 8;
  25. Mat grid;
  26. Mat W_inv;
  27. Net opencv_net;
  28. Mat BN_image;
  29. Mat image;
  30. Mat result_image;
  31. private void button1_Click(object sender, EventArgs e)
  32. {
  33. OpenFileDialog ofd = new OpenFileDialog();
  34. ofd.Filter = fileFilter;
  35. if (ofd.ShowDialog() != DialogResult.OK) return;
  36. pictureBox1.Image = null;
  37. pictureBox2.Image = null;
  38. textBox1.Text = "";
  39. image_path = ofd.FileName;
  40. pictureBox1.Image = new Bitmap(image_path);
  41. image = new Mat(image_path);
  42. }
  43. private void Form1_Load(object sender, EventArgs e)
  44. {
  45. modelpath = "model/model_deploy.onnx";
  46. inpHeight = 256;
  47. inpWidth = 256;
  48. opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
  49. Common.get_norm_rigid_mesh_inv_grid(ref grid, ref W_inv, inpHeight, inpWidth, grid_h, grid_w);
  50. image_path = "test_img/10.jpg";
  51. pictureBox1.Image = new Bitmap(image_path);
  52. }
  53. private unsafe void button2_Click(object sender, EventArgs e)
  54. {
  55. if (image_path == "")
  56. {
  57. return;
  58. }
  59. textBox1.Text = "检测中,请稍等……";
  60. pictureBox2.Image = null;
  61. Application.DoEvents();
  62. image = new Mat(image_path);
  63. dt1 = DateTime.Now;
  64. Mat img = new Mat();
  65. Cv2.Resize(image, img, new OpenCvSharp.Size(inpWidth, inpHeight));
  66. img.ConvertTo(img, MatType.CV_32FC3, 1.0f / 127.5f, -1.0f);
  67. BN_image = CvDnn.BlobFromImage(img);
  68. //配置图片输入数据
  69. opencv_net.SetInput(BN_image);
  70. //模型推理,读取推理结果
  71. Mat[] outs = new Mat[1] { new Mat() };
  72. string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
  73. opencv_net.Forward(outs, outBlobNames);
  74. dt2 = DateTime.Now;
  75. float* offset = (float*)outs[0].Data;
  76. Mat tp = new Mat();
  77. Mat ori_mesh_np_x = new Mat();
  78. Mat ori_mesh_np_y = new Mat();
  79. Common.get_ori_rigid_mesh_tp(tp, ori_mesh_np_x, ori_mesh_np_y, offset, inpHeight, inpWidth, grid_h, grid_w);
  80. Mat T = W_inv * tp;
  81. T = T.T();
  82. Mat T_g = T * grid;
  83. Mat output_tps = Common._interpolate(BN_image, T_g, new OpenCvSharp.Size(inpWidth, inpHeight));
  84. Mat rectangling_np = (output_tps + 1) * 127.5;
  85. rectangling_np.ConvertTo(rectangling_np, MatType.CV_8UC3);
  86. Mat input_np = (img + 1) * 127.5;
  87. List<Mat> outputs = new List<Mat>();
  88. outputs.Add(rectangling_np);
  89. outputs.Add(input_np);
  90. outputs.Add(ori_mesh_np_x);
  91. outputs.Add(ori_mesh_np_y);
  92. Mat input_with_mesh = Common.draw_mesh_on_warp(outputs[1], outputs[2], outputs[3]);
  93. Cv2.CvtColor(outputs[0], outputs[0], ColorConversionCodes.BGR2RGB);
  94. Cv2.ImShow("mesh", input_with_mesh);
  95. result_image = outputs[0].Clone();
  96. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  97. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
  98. }
  99. private void pictureBox2_DoubleClick(object sender, EventArgs e)
  100. {
  101. Common.ShowNormalImg(pictureBox2.Image);
  102. }
  103. private void pictureBox1_DoubleClick(object sender, EventArgs e)
  104. {
  105. Common.ShowNormalImg(pictureBox1.Image);
  106. }
  107. }
  108. }

下载

源码下载

天天代码码天天
微信公众号
.NET 人工智能实践
注:本文转载自blog.csdn.net的天天代码码天天的文章"https://lw112190.blog.csdn.net/article/details/139690728"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top